

4 February 2025

Napié Project Listing Rule 5.6 disclosure

As disclosed to the ASX on 24 January 2025, Aurum Resources Limited (ASX: AUE) (**Aurum** or the **Company**) has commenced compulsory acquisition with respect to the remaining shares in Mako Gold Limited (ASX: MKG) (**Mako**) that it does not currently own.

As at COB 3/02/2025, Aurum has received acceptances equal to 91.44% of Mako.

Aurum anticipates that Mako will be suspended from the ASX on 3 February 2025 and delisted from the ASX on or after 6 February 2025.

To allow the previously disclosed Exploration Results and Mineral Resource Estimates (**MRE**) of Mako with respect to the Napié Project to be disclosed and referenced by Aurum in future ASX disclosures, please find attached relevant information for the purposes of Chapter 5 of the ASX Listing Rules with respect to those Exploration Results and MRE.

Aurum confirms there has been no material change to Mako Exploration Results or the MRE which was first reported by Mako on the ASX as "Mako Delivers 868koz Maiden Resource to Provide Strong Growth Platform at Napié" on 14 June 2022.

This update has been authorised by the Board of Aurum Resources Limited.

ENDS

FORWARD-LOOKING STATEMENTS

This ASX release contains forward-looking statements about Aurum Resources Limited's exploration activities, drilling programs, and potential Mineral Resource Estimate at the Boundiali and Napié Gold Projects. These statements are based on current expectations and are subject to risks and uncertainties inherent in mineral exploration and mining. Factors that could cause actual results to differ materially include exploration risks, drilling results, resource estimation, gold prices, operational risks, regulatory changes, and broader economic conditions. Investors should not place undue reliance on these forward-looking statements.

COMPETENT PERSON'S STATEMENT

The information in this report that relates to Exploration Results is based on information compiled by Mrs Ann Ledwidge B.Sc.(Hon.) Geol., MBA, who is a Member of The Australian Institute of Geoscientists (AIG). Mrs Ledwidge is a consultant and a shareholder of the Company. Mrs Ledwidge has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mrs Ledwidge consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Mineral Resources is based on information compiled and reviewed by Mr Andrew Dawes, who is a Member of the Australasian Institute of Mining and Metallurgy and of The Australian Institute of Geoscientists (AIG) and is a Principal Geologist employed by Measured Group Pty Ltd. at the date of publication of Mineral Resource. Mr Andrew Dawes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Mineral Resources. Mr Andrew Dawes consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

DISCLAIMER

This Announcement ("Announcement") is for informational purposes only and is not a prospectus, disclosure document or offer document under the Corporations Act 2001 (Cth) ("Corporations Act") or any other law. This Announcement does not constitute, and is not to be construed as, an offer to issue or sell, or a solicitation of an offer or invitation to subscribe for, buy or sell securities in Aurum Resources Limited ACN 650 477 286 ("Aurum"). The material in this announcement has been prepared by the Company and contains summary information about the Company's activities. The truth or accuracy of the information in this announcement cannot be warranted or guaranteed by the Company. The information in this announcement is of a general background nature and does not purport to be complete or contain all the information security holders would require to evaluate their investment in the Company. It should be read in conjunction with the Company's other periodic and continuous disclosure announcements which are available at www.aurumres.com.au. Other than to the extent required by law (and only to that extent) the Company and its officers, employees and professional advisors make no reannouncement or warranty (express or implied) as to, and assume no responsibility or liability for, the contents of this announcement.

This Announcement does not purport to contain all information that recipients may require to make an informed assessment of Aurum or its securities. Statements in this Announcement are made only as at the date of this Announcement unless otherwise stated and remain subject to change without notice. No reannouncement or warranty, express or implied, is made as to the fairness, accuracy or completeness of the information or opinions contained in this Announcement, or any omission from this Announcement. To the maximum extent permitted by law, Aurum disclaims any responsibility to inform any recipient of this Announcement on any matter that subsequently comes to its notice which may affect the information contained in this Announcement, and undertakes no obligation to provide any additional or updated information whether as a result of new information, future events or results or otherwise.

NOT FINANCIAL PRODUCT ADVICE OR OFFER

Information in this announcement, including forecast financial information, should not be considered as advice or a recommendation to investors or potential investors in relation to holding, purchasing or selling securities. Before acting on any information, you should consider the appropriateness of the information having regard to these matters, any relevant offer document and in particular, you should seek independent financial advice.

COMPLIANCE STATEMENT

To allow the previously disclosed Exploration Results and Mineral Resource Estimates (MRE) of Mako with respect to the Napié Project to be disclosed and referenced by Aurum in future ASX disclosures, please find following references to ASX releases for the relevant information being disclosed by Aurum for the purposes of Chapter 5 of the ASX Listing Rules. The information in this report refers to Exploration Results and a Mineral Resource Estimate relating to the Napié Project is extracted from the Company's and Mako Gold Limited ACN 606 241 829 (ASX:MKG) ("Mako") ASX announcements and these are detailed below:

31 Jan 2025, Drill Collar Table Addendum (ASX:AUE)

31 Jan 2025, Change in substantial holding for MKG (ASX:AUE)

31 Jan 2025, Quarterly Activities/Appendix 5B Cash Flow Report (ASX:AUE)

30 Jan 2025, Aurum hits 150 g/t gold at Boundiali, Cote d'Ivoire (ASX:AUE)

29 Jan 2025, MKG - Suspension of Trading and Delisting From ASX (ASX:AUE)


```
24 Jan 2025, Compulsory Acquisition Notice Mako Takeover (ASX:AUE)
```

24 Jan 2025, Non Binding MoU with SANY Heavy Equipment Co (ASX:AUE)

23 Jan 2025, Change in substantial holding for MKG (ASX:AUE)

9 Jan 2025, Best and Final offer for Mako Gold Limited (ASX:AUE)

31 Dec 2024, Boundiali Project Maiden Resource delivers 1.6 Moz (amended) (ASX:AUE)

30 Dec 2024, Boundiali Gold Project Maiden Resource delivers 1.6 Moz (ASX:AU)

24 Dec 2024, Change in substantial holding for MKG (ASX:AUE)

23 Dec 2024, AUE achieves in excess of 95% gold recoveries from Boundiali (ASX:AUE)

18 Dec 2024, Aurum hits 277 g/t gold at Boundiali BM Target 3 $\,$

13 Dec 2024, Change of Directors and Addition of Joint Company Secretary (ASX:AUE & ASX:MKG)

6 Dec 2024, AUE receives firm commitments for A\$10 million placement (ASX:AUE)

29 Nov 2024, Aurum earns 80% interest in Boundiali BM tenement (ASX:AUE)

28 Nov 2024, AUE appoints Mr. Steve Zaninovich as Non-Executive Director (ASX:AUE)

22 Nov 2024, AUE Declares Takeover Offer for all MKG Shares Unconditional (ASX:AUE)

15 Nov 2024, Supplementary Bidders Statement (ASX:AUE)

11 Nov 2024, Aurum hits 36 g/t gold at BM T1 of 2.5km strike (ASX:AUE)

30 Oct 2024, Bidders Statement (ASX:AUE)

16 Oct 2024, Recommended Takeover of Mako Gold By Aurum Resources (ASX:AUE)

16 Sep 2024, Rock Chip Results up to 170g/t Au on Komboro-amended (ASX:MKG)

13 Sep 2024, Rock Chip results up to 170g/t Au on Komboro at Napie (ASX:MKG)

13 Aug 2024, Shallow High-Grade Gold from Scout Drilling at Tchaga North (ASX:MKG)

10 Jul 2024, RC Drill Program Commences at Tchaga North (ASX:MKG)

14 May 2024, Mako Exploration Update (ASX:MKG)

24 Apr 2024, New High-Grade Gold Zone Discovered at Tchaga North (ASX:MKG)

19 Mar 2024, Wide Manganese Bands Extending to Depth at Korhogo (ASX:MKG)

05 Mar 2024, High-Grade Rock Chips Expand Tchaga North Drill Target (ASX:MKG)

13 Feb 2024, New Large-Scale Manganese Zones Identified at Korhogo (ASX:MKG) 01 Feb 2024, New Areas at Napie with Very High Grade Rock Chip Results (ASX:MKG)

29 Jan 2024, Napie Gold Project and Goldridge Due Diligence Update (ASX:MKG)

17 Nov 2023, \$2.0m Placement and Potential Acquisition (ASX:MKG)

22 Sep 2023, Exploration Update for Napie and Korhogo Projects (ASX:MKG)

21 Aug 2023, Significant Manganese Discovery Confirmed at Korhogo (ASX:MKG)

24 Jul 2023, Diamond Drilling Underway for Resource Expansion at Napie (ASX:MKG)

13 Jul 2023, Napie Project New Gold Discoveries (ASX:MKG)

14 Jun 2023, First RC Drilling Delivers High-Grade Gold at Gogbala South (ASX:MKG)

24 May 2023, Drilling Commences on Manganese Discovery at Korhogo Project (ASX:MKG)

15 May 2023, Multi-Rig Drill Program Commences at Napie Gold Project (ASX:MKG)

26 Apr 2023, Two 7km Manganese-Rich Horizons Discovered at Korhogo (ASX:MKG) 20 Mar 2023, Phase 2 Auger Results Vector in to New RC Targets at Napie (ASX:MKG)

27 Feb 2023, Drill for Equity MOU with Geodrill for up to US\$2m (ASX:MKG)

06 Feb 2023, Infill Auger Commences on Highest Priority Targets at Napie (ASX:MKG)

01 Feb 2023, New Gold Zone Outside Mineral Resource at Napie (ASX:MKG)

Of rep 2023, New Gold Zoile Odiside Milleral Resource at Naple (ASX.MRG)

25 Jan 2023, Auger Results Indicate Potential for Napie Resource Growth (ASX:MKG)

15 Nov 2022, 25,000m Auger Program Commences at Napie (ASX:MKG)

21 Oct 2022, Mako Completes 90% Consolidation of Napie Gold Project (ASX:MKG)

14 Oct 2022, \$3.1M Equity Raise to Fund Napie Project Growth Strategy (ASX:MKG)

11 Jul 2022, High-Grade Gold Discovery at Napie Komboro Prospect (ASX:MKG)

14 Jun 2022, Mako Delivers 868koz Maiden Resource at Napie Project (ASX:MKG)

01 Jun 2022, Tchaga North Aircore Returns 4m at 101 Grams Gold (ASX:MKG)

25 May 2022, Exceptional Gogbala Results Ahead of Napie Maiden Resource (ASX:MKG)

13 May 2022, Maiden RC Drill Program At Korhogo Project (ASX:MKG)

02 May 2022, 2km Gold Anomaly at Korhogo, Maiden RC Drill Program (ASX:MKG)

26 Apr 2022, Two New Mineralised Zones Show Growth Potential at Gogbala (ASX:MKG)

30 Mar 2022, Wide High-Grade Results Returned from Gogbala (ASX:MKG)

15 Mar 2022, Tchaga Deep Extensional Drilling Delivers High-Grade Gold (ASX:MKG)

11 Mar 2022, Second Rig Accelerates Drilling at Gogbala Prospect (ASX:MKG)

24 Feb 2022, Further High-Grade Gold from Gogbala Extensional Drilling (ASX:MKG) 10 Feb 2022, 15,000m Scout AC Drilling Program on Napie Project (ASX:MKG)

07 Feb 2022, 7,000m Auger Drilling Program Commences on Korhogo Project (ASX:MKG)

18 Jan 2022, High-Grade Gold from Drilling at Tchaga and Gogbala Projects (ASX:MKG) 14 Dec 2021, Second Drill Rig Commences at Napie (ASX:MKG)

30 Nov 2021. Second Drill Secured to Fast Track Napie Development (ASX:MKG)

13 Oct 2021, Widest Drill Intercepts to Date at Gogbala Prospect (ASX:MKG)

06 Oct 2021, Gogbala Returns Multiple Wide and High-Grade Results (ASX:MKG)

09 Sep 2021, Gogbala High-Grade Results Confirms Similarities with Tchaga (ASX:MKG) 30 Aug 2021, \$10m Placement Completed and 45,000m Drill Program Commenced (ASX:MKG)

17 Aug 2021, Best Ever Grade in Continued Drilling Success at Tchaga (ASX:MKG)

12 Aug 2021, 10,000m Drill Program Commences on Gogbala Prospect at Napie (ASX:MKG)

09 Aug 2021, Drilling Extends Tchaga Strike to 2km (ASX:MKG)

06 Jul 2021, Drilling Continues to Expand Mineralised Footprint at Tchaga (ASX:MKG)

04 Jun 2021, Tchaga Continues to Expand With Further High-Grade Results (ASX:MKG)

26 May 2021, Shallow High-Grade Results Extend Tchaga Strike to 1.8km (ASX:MKG)

19 May 2021, Drilling Extends Gogbala Gold Mineralised Trend to Over 7km (ASX:MKG)

28 Apr 2021, Tchaga Delivers Wide High-Grade Drill Results at Depth (ASX:MKG)

15 Mar 2021, Gogbala Results Confirm Potential for High-Grade Gold System (ASX:MKG)

11 Mar 2021, Extension of Tchaga Shallow High Grade Gold Mineralisation (ASX:MKG)

22 Feb 2021, Exploration Commences on Recently Granted Korhogo Permits (ASX:MKG)

21 Jan 2021, Mako Granted Ouangolodougou Permit in Cote D'Ivoire (ASX:MKG)

13 Jan 2021, Tchaga Delivers Widest, High-Grade Gold Intercepts to Date (ASX:MKG)

14 Dec 2020, Continuing Shallow, Wide, High-Grade Intersections at Tchaga (ASX:MKG)

17 Nov 2020, Shallow High-Grade Gold Zone Confirmed at Tchaga (ASX:MKG)

09 Nov 2020, Wide and High-Grade Gold Intercepts Continue at Tchaga (ASX:MKG)

17 Sep 2020, Drilling at Tchaga Extends Gold Mineralisation by 250m (ASX:MKG)

11 Aug 2020, Tchaga Shallow Drilling Intersects 13m at 20.82g/t Gold (ASX:MKG)

04 Aug 2020, Tchaga Drilling Continues to Deliver Wide & High-Grade Gold (ASX:MKG)

15 Jul 2020, Tchaga Prospect Delivers Multiple High-Grade Intercepts (ASX:MKG)

25 Jun 2020, Mako Commences 10,000 Metre Drill Program at Napie Project (ASX:MKG)

05 Mar 2020, High-Grade Results Extend Mineralisation at Depth at Tchaga (ASX:MKG)

12 Dec 2019, Share Placement to Accelerate Tchaga Drilling (ASX:MKG)

03 Dec 2019, Exceptional Results Continue at Tchaga Napie Project (ASX:MKG)

08 Oct 2019, Drill-for-Equity MOU with Geodrill for up to US\$1M (ASX:MKG)

25 Sep 2019, Tchaga Prospect Excellent Preliminary Metallurgical Results (ASX:MKG)

09 Aug 2019, Mako Receives Final Drill Results for Napie Project (ASX:MKG)

25 Jul 2019, Strike Length of Mineralisation at Napie Project Doubles (ASX:MKG)

24 Jul 2019, Mako on Path to Earn up to 75% of Napie Permit (ASX:MKG)

11 Jul 2019, Drilling Completed at Napie Project Cote d Ivoire (ASX:MKG)

29 May 2019, Drilling Recommences at Napie Project Cote D'Ivoire (ASX:MKG)

13 Mar 2019, Wide High-Grade Gold Results of up to 28m@4.86g/t from Napie (ASX:MKG)

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original reports and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original report.

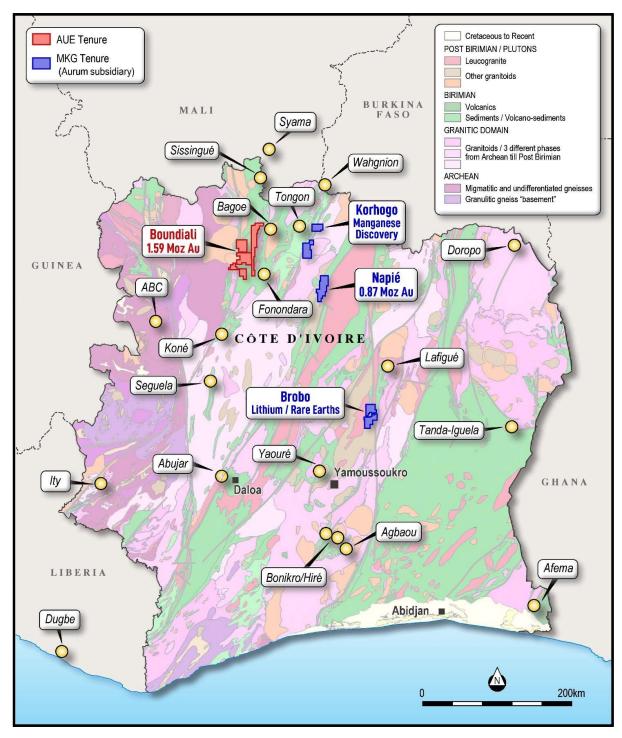


Figure 1: Location of Aurum's projects in Côte d'Ivoire

NAPIÉ GLOBAL RESOURCE

The MRE comprises the Tchaga and Gogbala prospects which **constitute only 4.4km of the 30km-long Napié Shear**. Tchaga and Gogbala are two of four prospects currently being explored by the Company, which are located on a +23km soil anomaly and coincident 30km-long Napié Shear. Only **13% of the Napié Shear has been systematically drilled,** indicating the **strong potential for resource growth** at Napié by drilling between Tchaga and Gogbala as well as on other undrilled portions of the Napié Shear (Figure 2).

The Napié maiden MRE is much shallower than the average 300m depth for recent resources¹ in West Africa. The maximum resource depth, which is constrained due to limited deeper drilling, is 195m at Tchaga and 160m at Gogbala.

Part of the Company's near-term growth strategy is to drill below the current limits of the MRE at Tchaga and Gogbala as shown by the vertical blue arrows on Figure 2, below.

The grades at Tchaga and Gogbala increase with depth, as shown in Table 1, supporting the strategy that **deeper drilling has the potential to add higher-grade ounces** to the resource.

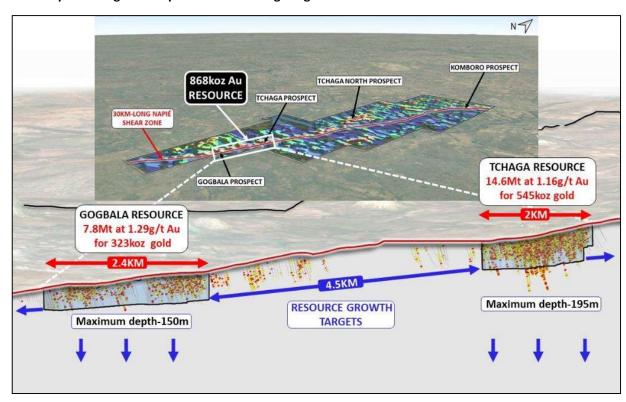


Figure 2: MRE on Tchaga and Gogbala which cover 4.4km of prospective 30km-long Napié Shear Zone

¹ Average recent West African resource depth compiled from recent ASX announcements from Chesser Resources, Oklo Resources, Predictive Discovery, Tietto Minerals, Marvel Gold, and Golden Rim Resources

		Tchaga			Gogba	la		Combin	ed
Depth Interval m	Tonnes Mt	Grade g/t Au	Contained Metal Au	Tonnes Mt	Grade g/t Au	Contained Metal Au	Tonnes Mt	Grade g/t Au	Contained Metal Au koz
0 -50	4.8	1.09	170	2.8	1.19	108	7.7	1.13	278
50-100	5.5	1.08	191	2.9	1.29	122	8.5	1.15	313
100-150	3.1	1.33	132	1.9	1.38	85	5.0	1.35	217
150-BOR	1.2	1.38	52	0.1	1.90	7	1.3	1.42	60
Total	14.6	1.16	545	7.8	1.29	323	22.5	1.20	868

Resources reported at a cut-off grade of 0.6g/t gold. BOR = Base of Resource. Differences may occur in totals due to rounding. Table 1: MRE grade and tonnage by depth

The maiden Mineral Resource Estimate at Napié is classified as Inferred. Detailed metallurgical test work and near-term infill drilling will assist with low-cost reclassification to Indicated. The majority of the resource is in fresh rock, with less than 11% in the shallow (30-40m deep) oxide zone (Table 2).

Classification	Deposit	Zone	Tonnes Mt	Grade g/t Au	Contained Metal Au Koz	Total %
		Oxide	1.6	1.17	60	
		Transition	1.0	1.07	34	63%
	Tchaga	Fresh	12.1	1.16	452	
		Subtotal	14.6	1.16	545	
Inferred		Oxide	0.8	1.24	33	
Illierieu		Transition	0.9	1.12	31	
	Gogbala	Gogbala Fresh	6.2	1.31	260	37%
		Subtotal	7.8	1.29	323	
	Global	Resource	22.5	1.20	868	100%

Differences may occur in totals due to rounding.

Table 2: Napié Maiden MRE reported at a cut-off grade of 0.6g/t Au

TCHAGA DEPOSIT

The resource at Tchaga comprises 14.6Mt at 1.16g/t Au for 545koz contained ounces of gold. The resource is shallow and includes high-grade lodes shown in red and pink in Figure 3. The grades increase with depth as shown in Table 1 where the grade of the deposit below 150m increases to 1.38g/t Au. Further drilling at depth may provide an uplift in the grade of the deposit.

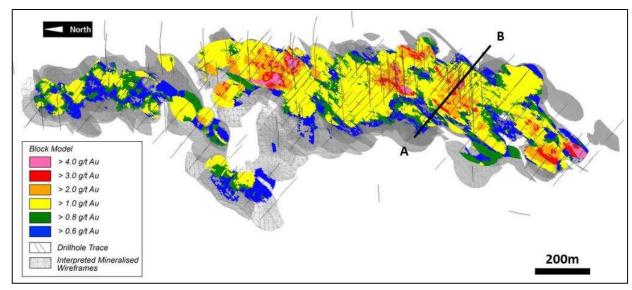


Figure 3: Tchaga plan view of grade zones through block model

The resource at Tchaga was estimated to a maximum depth of 195 meters. Although geological modelling showed continuity of mineralisation, the density of the drilling below 195m is currently insufficient to support classification into the MRE, and as such, some high-grade lodes were excluded. Planned deeper drilling, such as in the grey areas shown in Figure 4, has the potential to significantly increase the resource with minimal drilling.

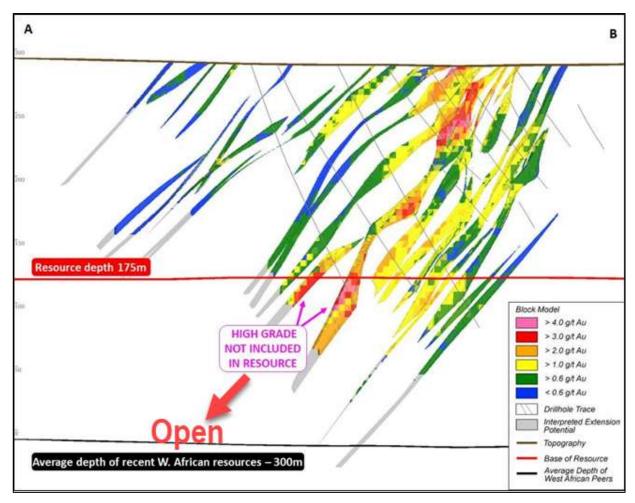


Figure 4: Tchaga cross section A-B looking NE with block model grade zones (location shown on Figure 3)

GOGBALA DEPOSIT

The resource at Gogbala comprises 7.8Mt at 1.29g/t Au for 323koz contained ounces of gold. The resource is shallow and includes high-grade lodes shown in red and pink in Figure 5. The grade of the deposit is higher at Gogbala than at Tchaga and grade also increases with depth, as shown in Table 1, where the grade of the deposit below 150m increases to 1.90g/t Au. Further drilling at depth may provide an uplift in the grade of the deposit.

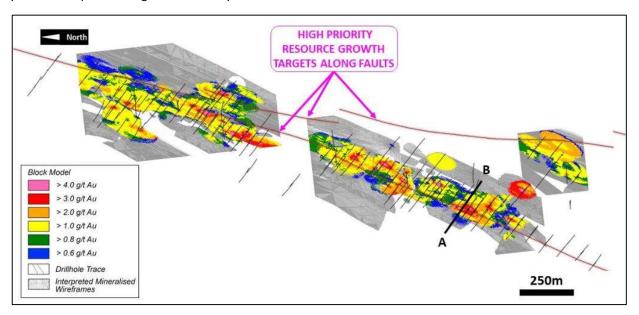


Figure 5: Gogbala plan view of grade zones through block model

The resource at Gogbala was estimated to a **maximum depth of 160 meters**. There was very limited drilling below 150m depth therefore some high-grade blocks, such as shown in Figure 6, were excluded from classification into the MRE. Similar to Tchaga, planned **further deep drilling has the potential to significantly increase the resource in the near-term**.

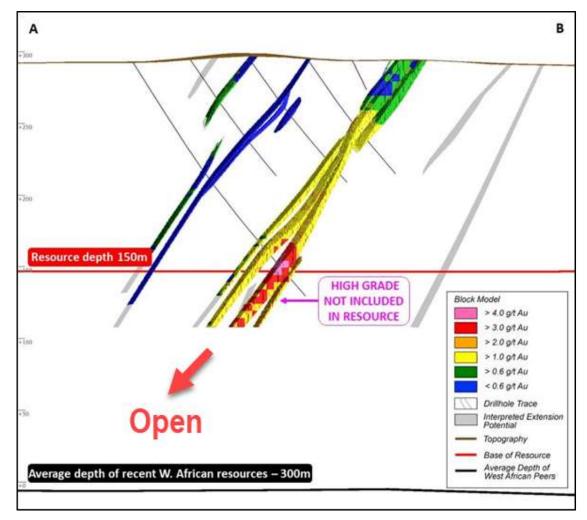


Figure 6: Gogbala cross section A-B looking NE with block model grade zones (location shown on Figure 5)

MAIDEN RESOURCE – SUPPORTING INFORMATION

Geology and Geological Interpretation

The Napié Project is located within the Daloa greenstone belt and forms part of the gold-bearing Birimian greenstone terrain of West Africa. The geology of the Tchaga and Gogbala deposits consist mainly of interbedded felsic to mafic volcanoclastics, with lesser intermediate to mafic intrusives, and conglomerates along the Napié Shear to the east. Gold mineralisation is hosted with quartz veins and stringers and the silica, sericite, iron-carbonate, pyrite altered selvages. Quartz veins are mainly centimetre-scale with some reaching up to metre-scale.

Mineralised boundaries for the current resource estimate have been determined on gold grade from both RC and DD holes. Measured Group created 3D solid wireframes from mineralised boundaries using the Geological Model tool in Seequent Leapfrog Geo (Leapfrog).

Sampling and Sub-sampling Techniques

Sampling was undertaken along the entire length of all drill holes.

Each 1m RC drill hole interval was collected in a plastic sample bag. A sub-sample was collected using a riffle splitter to obtain a 3-6kg sample for laboratory analysis.

DD holes were cut and sampled at nominal 1m lengths, except where lengths were altered to match geological boundaries. Sampling was undertaken along the entire length of DD drill holes. Circa 2 to 4kg samples were submitted to the laboratory.

Sample Analysis Method

Samples were submitted to Bureau Veritas Minerals, Intertek, MSA, SGS or ALS in Cote d'Ivoire for sample preparation of a pulverised 200g subsample which was then assayed for gold by 50g fire assay with AAS finish. Fire assay is considered total assay for gold and is considered appropriate for this style of mineralisation.

QAQC samples, consisting of a minimum of 2 blanks, 1 duplicate and 1 standard, were submitted with each drill hole. Regular reviews of the sampling and QAQC protocols were carried out by the supervising geologist to ensure all procedures were followed and best industry practice carried out. Monitoring of results of duplicates, blanks and standards is conducted each time an assay batch is uploaded to MX Deposit database.

Drilling Techniques

RC drilling was carried out using a 5 3/8-inch face sampling hammer using an Austex 900 or 650 multipurpose drill rig. HQ size core was recovered using either the multipurpose rigs set up for DD drilling, a UDR200 core rig or, in the case of only three holes, a man-portable rig mounted on tracks. Core was oriented using a Reflex Ace tool for all DD holes. RC recovery is 92% and DD recovery is 100%.

Drill and Data Spacing

Drill holes are nominally spaced on 20m northwest-southeast section lines at the Tchaga Deposit and on 40m northwest-southeast section lines at the Gogbala Deposit. The majority of holes were drilled towards the southeast and are spaced 25m to 50m on section with some limited areas of closer spaced drilling resulting from early holes drilled towards the east.

Resource Estimation Methodology

The Mineral Resource Estimate is classified as Inferred.

The Mineral Resource is split into 4 discrete mineralised areas; Tchaga, Gogbala North, Gogbala South and Gogbala East. The relative wireframe dimensions, number of veins, and variability in terms of continuity of each deposit is characterised in Table 1 - Section 3 in Appendix 1.

Variography, ordinary kriging and block model estimation was completed using Leapfrog Edge.

Data was composited to 2m. Top cuts were applied to each of the 4 discrete mineralised areas after review of the composite histograms of gold grade for each individual vein hard boundary. A summary of top cuts applied can be found in Table 1 - Section 3 in Appendix 1.

Density measurements were collected from oxide, transition, and fresh material. Global average values (detailed in Table 1 - Section 3 in Appendix 1) were applied to the block model, which is appropriate for an Inferred Resource.

Cut-off Grades

The geological domain boundaries were determined in general using a lower cut-off grade of 0.25g/t gold. Resources are reported at a 0.6g/t Au lower cut-off grade.

Cut Off Grade (g/t Au)	Mass (tonnes)	Grade (g/t Au)	Contained Metal Au oz
0.3	31,163,247	1.00	1,000,377
0.4	29,346,532	1.04	979,407
0.5	26,002,661	1.11	930,674
0.6	22,450,735	1.20	868,010
0.7	18,978,790	1.30	795,414
0.8	15,809,706	1.41	719,076
0.9	13,065,976	1.53	644,195
1	10,838,471	1.65	576,319

Table 3: Resource Estimate Sensitivity to Cut-off Grades

Mining and Metallurgical Parameters

Over 93% of the MRE is shallower than 150m, and 68% is shallower than 100m vertical depth,

making the MRE appropriate for open-cut mining consideration. Assumptions made on mining methods for the purpose of this MRE are truck and shovel, open-pit mining operations. No mining dimensions or dilution were considered. A 5x5x5 parent block estimation was used as representing a minimum mining dimensions scenario.

Preliminary metallurgical testwork at Tchaga shows 94% recovery in oxide and fresh rock, however no recovery factors are considered for the MRE.

The maiden Napié MRE is limited to a maximum depth of 195m depth of cover (DOC). The resource remains open at depth, with drilling shown to intercept mineralisation interpretations down to 320m. Global grades from surface to 195m depth are shown to increase with depth from 1.13g/t to 1.42g/t for the MRE. A peer analysis of West African deposits with similar grades and total contained ounces shows average open-pit resource depths of over 300m DOC.

A 0.6g/t cut-off grade shows good block continuity.

NEXT STEPS FOR NEAR-TERM RESOURCE GROWTH POTENTIAL

The Company plans to continue drilling programs at Napié in order to quickly advance towards a multi-million-ounce resource base.

In addition to the potential pathways to resource growth at depth at Tchaga and Gogbala, there are several large targets at Napié which provide a **low cost, rapid path to resource extension through shallow drilling**:

1. Infill drilling on the 4.5km section between Tchaga and Gogbala (Figure 2)

Only limited drilling completed along this section of the Napié shear, which has returned positive drilling results. The drilling strategy is to work outwards (to the north and south) of known positive results along the shear so that the extent and density of drilling can add resources. The goal is to close the gap between Tchaga and Gogbala and have a semicontinuous resource over the entire 4.5km stretch of Napié shear between the two currently defined resource areas.

2. Gogbala multi-km shallow resource growth (Figure 7)

Gogbala presents significant shallow growth potential along multi-kilometre stretches of the Napié shear that has had limited or no drilling.

- The 4.5km-long eastern splay of the Napié shear where only a small part of the resource was included (white resource outline in the pink ellipse). Make the previous operators had only just began drilling the area in the small resource block prior to cutting off drilling for the MRE. Drilling immediately north and south of the small resource block is the highest priority target when drilling resumes at Gogbala. The Company believes that there is potential for significant resource growth on the 4.5km stretch of the eastern splay of the Napié shear. This is the fastest and lowest-cost approach to resource expansion since this would only require shallow drilling with 100 to 150m deep DD holes.
- The 2km-long northern extension of the northern block of the MRE. Make had drilled intermittently in this area with positive drill results, but insufficient density of drill holes precluded the inclusion results from this area of the MRE. Using the same strategy as point 1 above, and drilling outwards from previous positive drill results, provides a clear pathway to outlining further resources in this 2km gap. This approach overlaps with the strategy outlined in point 1, with the goal of adding significant resources north of Gogbala and south of Tchaga.
- The gap between the north and south resource blocks at Gogbala will be drilled with the goal of infilling the resource between the two blocks. This has the potential to significantly improve the contiguous mineralised strike length at Gogbala.

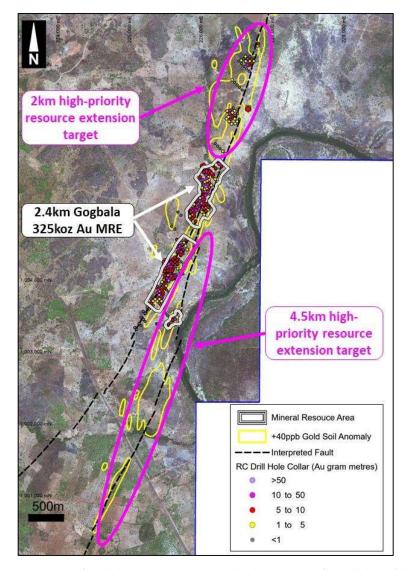


Figure 7: Plan view of Gogbala MRE outline with multi-km long portions of undrilled Napié shear

EXPLORATION UPSIDE TO INDENTIFY NEW RESOURCE TARGETS

Drilling planned for the Komboro Prospect and Tchaga North Prospect (Figure 8 to Figure 11) is a key element of the Company's strategy to define multi-million-ounce resource at Napié, which the Company believes has district scale potential.

Komboro Prospect

Rock chip sampling results at Komboro, Napié Project returned very high-grade results including 170g/t Au, 41.92g/t Au, 6.27g/t Au, 4.63g/t Au, and 3.48g/t Au (Figure 9 - Figure 11)
Previous limited shallow drilling at Komboro returned high-grade gold intercepts including:

- NARC741: 9m at 3.26g/t Au from 67m; including 3m at 7.29g/t Au from 67m; and
- 1m at 30.47g/t Au from 86m
- NARC743: 1m at 8.45g/t Au from 74m
- NARC753: 5m at 1.64g/t Au from 56m

Only 21 RC holes have been drilled at Komboro to date over a 6km-by-6km area where 6 of 7 targets drilled returned significant gold values, highlighting untapped potential of the northern part of the permit. Work is ongoing to complete mapping and rock-chip sampling and generating new high-grade targets for drill testing of artisanal mining sites on the permit.

*Tchaga North (*Figure 12)

A 2km-long gold mineralised zone was identified by Mako where AC drilling returned up to 4m at 101.31g/t Au and previous RC drilling by the Company in 2018 returned 8m at 8.53g/t Au and 1m at 215g/t Au with visible gold. This zone lies 2km north of the Tchaga Prospect.

The footprint of the +40ppb soil anomaly at Tchaga North is much larger than at Tchaga where 545koz have been delineated in the maiden MRE.

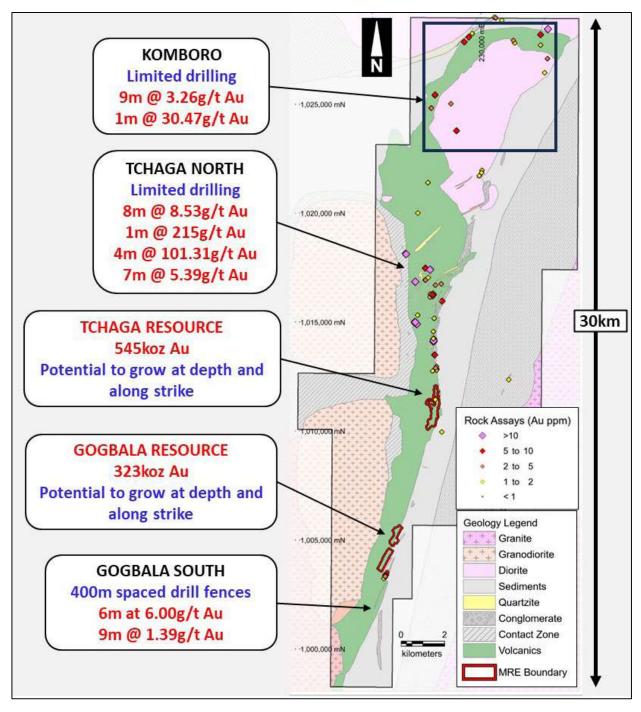


Figure 8: Napié Project – Previous results with detailed mapping area on Komboro Prospect shown in black rectangle (Figure 9)

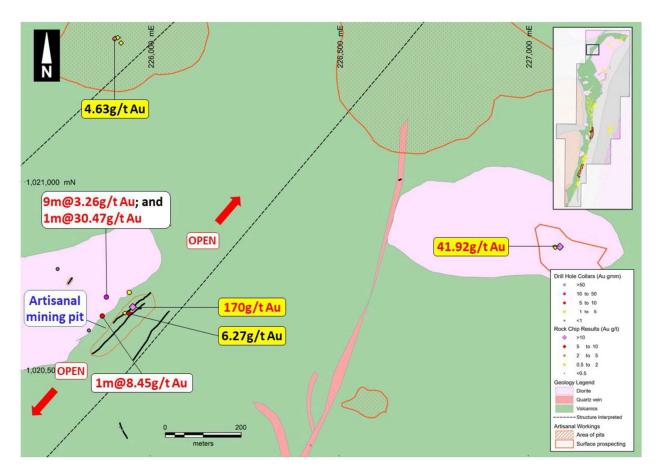


Figure 9: Location map of high-grade rock chip samples (yellow) as well as high-grade drill results (white) from previous scout drilling program

Figure 10: Artisanal mining site which returned rock chip results up to 170g/t Au and previous drilling results up to 30g/t Au

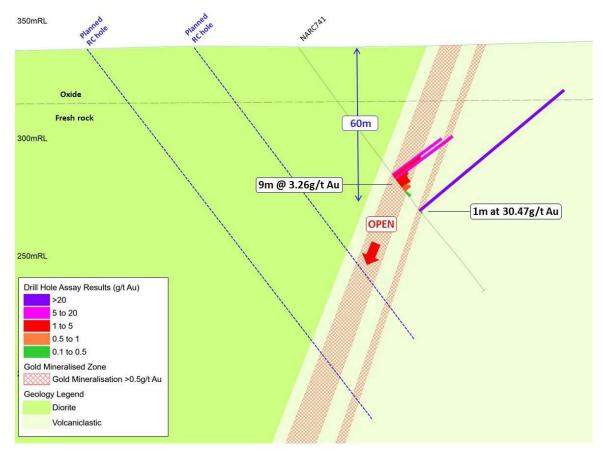


Figure 11: Cross section from previous scout drilling at artisanal mining site which returned rock chip samples up to 170g/t Au from spoil piles

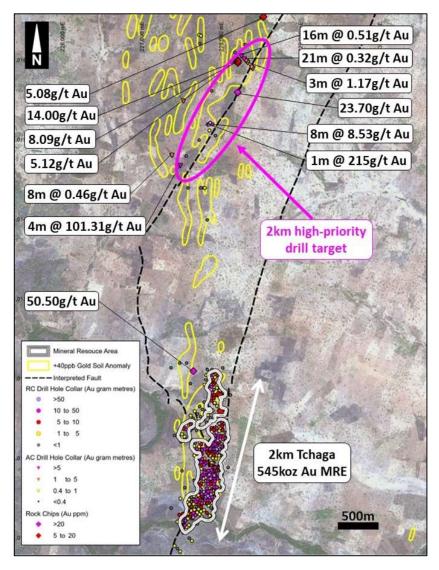


Figure 12: Plan view of Tchaga MRE outline and Tchaga North prospect with multi-km long portions of undrilled Napié shear

Appendix 1 - JORC 2012 Table 1 Reporting

Section 1 - Sampling techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	The Napié maiden Mineral Resource Estimate (MRE) is centred on the Tchaga and Gogbala area deposits. A total of 12 Diamond Drilling holes (DD), 57 Reverse Circulation and Diamond tail holes (RCDD) and 501 Reverse Circulation holes (RC) drilled by Mako between 2018 and 2022, are used in the resource estimate. This represents 77% of the RC and DD drilling done to date on Napié. Two historic RC holes were drilled prior to Mako's drilling. Both holes are included in the MRE. Sampling was undertaken along the entire length of RC drill holes. Each 1m RC drill hole interval was collected in a plastic sample bag. A sub-sample was collected using a riffle splitter to obtain a 3-6kg sample for laboratory analysis. DD holes were cut and sampled at nominal 1m lengths, except where lengths were altered to match geological boundaries. Sampling was undertaken along the entire length of DD drill holes. Circa 2 to 4kg samples were submitted to the laboratory. Where report relates to results for aircore drilling (AC) (AC drilling not used in MRE) and rock chip sampling on the Napié Permit. The focus of this program was scout exploration drilling on various drill lines throughout the northern part of the permit (Komboro and Tchaga North prospects) to test various soil, auger, rock chip anomalies, as well as to test structural targets identified from airborne geophysics. AC drill samples were collected along the entire length of drill holes and submitted as maximum 4m interval composites (or minimum 2m intervals at the end of drill holes depending on depth drilled). Rock chip samples were collected from in-situ material, whilst rock "spoil" samples were collected from loose material in or adjacent to artisanal mining pits. Both are considered representative of the outcrop or rock in the artisanal workings.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC drilling was carried out using a 5 ³/s-inch face sampling hammer using an Austex 900 or 650 multipurpose drill rig. HQ size core was recovered using either the multipurpose rigs set up for DD drilling, a UDR200 core rig or, in the case of only three holes, a man-portable rig mounted on tracks. Core was oriented using a Reflex Ace tool for all DD holes. AC drilling was carried out to blade refusal using an X300 aircore rig with 3 ½ inch drill rods. Drilling was towards an azimuth of 135° and an inclination of -55°. No downhole surveys were conducted for this scout drill program (AC drilling not used in MRE)

Criteria	JORC Code explanation	Commentary
Drill sample	Method of recording and assessing core and chip sample	RC recoveries were determined by weighing each drill metre bag
recovery	recoveries and results assessed.	relative to the expected weight for each 1m interval. Results show good recoveries with an overall recovery of 92%.
	Measures taken to maximise sample recovery and ensure	
	representative nature of the samples.	The RC drill metre sample recoveries were monitored at the drill site by the rig geologist. If necessary, the booster and auxiliary
	Whether a relationship exists between sample recovery and grade	compressor was used to maximize recovery and prevent wet
	and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	samples. The use of a booster and auxiliary compressor provide dry samples for depths below the water table. If water ingress is greater than the air pressure available, the RC drill hole is stopped and, if required, the hole is completed with a DD tail.
		DD recoveries were calculated by measuring the length of core in the core box relative to the drill run length. Results show excellent core recoveries of 100%. DD drilling used triple tube technique to maximize recovery in poorly consolidated ground.
		The Rock Quality Designation (RQD) value is calculated by summing the total length of core in the run composed of pieces of core greater than 10 cm in length. The RQD is converted to a percentage.
		No relationship has been observed between sample recovery and grade.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Geological logging was carried out on all RC chips and drill core by Mako Gold geologists. Logging includes lithology, alteration, intensity of oxidation, intensity of foliation, sulphide percentages and vein percentages. A standard lithological and alteration legend is used to produce consistent qualitative logs. This legend includes descriptions, and a visual legend with representative photos for comparison purposes. Sulphide and vein content (expressed as %) are quantitative in nature. Intensities are qualitative in nature. Basic geotechnical logging including RQD was recorded for all DD core. The level of detail of logging is considered appropriate for Mineral Resource estimation. A sample of RC chips are washed and retained in chip trays marked with hole number and down hole interval. All RC chip trays are photographed. Structural measurements from core are quantitative in nature. The half-core not sent to the laboratory remains in core trays marked with the hole number and metre marks indicating length drilled. All DD core is photographed in the field prior to being transported to the core yard, as whole core with orientation lines visible and as half core after sampling. The total amount of logging of RC holes is 60,638 m (100%) and of core is 7,394m (100%) which includes core tails in RCDD holes. For AC; geological logging was carried out on all AC chips and rock samples by Mako Gold geologists. Logging includes a description of lithology, sulphide percentages and vein percentages. All samples were within the saprolite/saprock zone and were oxidised. A standard lithological legend is used to produce consistent qualitative logs. This legend includes descriptions and a visual legend with representative photos for comparison purposes. Sulphide and vein content (expressed as %) are quantitative in nature. Intensities are qualitative in nature. All AC holes are photographed showing each 1m interval recovered.

Sub-sampling techniques and sample preparation If core, whether cut or sawn and whether quarter, half or all core taken.

If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.

For all sample types, the nature, quality and appropriateness of the sample preparation technique.

Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.

Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.

Whether sample sizes are appropriate to the grain size of the material being sampled.

Core is sawn into half core as per industry standards and the right side (looking down the hole) is sent to the laboratory.

RC samples are riffle split to provide representative sub-samples. The splitting method uses a single tier or 3-tier riffle splitter based on the original sample weight to provide a notional 3-6kg sample for submission to the lab. The splitting method is recorded for each sample. All RC was sampled dry. The majority of RC samples used in the MRE are 1m interval samples. Composites (1kg riffle split of 1m drill sample composited up to 4m intervals) were submitted for assay for some drill holes up to early 2019. Any assays that returned greater than 4m at 0.25g/t Au were resampled at 1m intervals.

Industry standard sample preparation is conducted under controlled conditions within the laboratory and is considered appropriate for the sample types. For both drill core and RC samples, the laboratory prepared the samples by drying the field sample, crushing the entire sample to 75% passing 2 mm, taking a 1.5 kg split, then pulverising the 1.5 kg split to 85% passing 75 microns. For samples received in pulp form (standards or blanks), the lab screened 1 in 20 samples to ensure 85% pass 75 microns, if the screen test fails then all samples are screened, any samples failing the screen test are milled to attain the required particle size.

Duplicate samples were analysed in all DD holes (includes DD tails in RCDD holes). Duplicate pairs represented 4% of all core samples analysed. A total of 53 field duplicates were collected in 26 drill holes by sawing half core into quarter core. A total of 99 duplicates were collected in 43 drill holes by submitting the half-core and requesting a lab split after the sample was crushed, which was deemed to provide a more representative duplicate and was the preferred duplicate protocol commencing in January 2021. Results show good correlation between original and duplicate samples. Sample sizes and preparation techniques are considered appropriate.

Duplicate samples were analysed in all RC holes and duplicate pairs represented 3.3% of samples analysed. Results from RC drill chips showed good overall correlation between original and field duplicate samples. In the rare instances where poor correlation is noted an explanation or confirmation through reassay is done. In one instance the field duplicate returned 8.62g/t Au and the original was below detection. Investigation showed the sample marked original was in fact a blank control sample. Field resampling confirmed that the 8.62g/t Au value was reliable and therefore was changed to this value in the database. In a few other instances, the original values were supported by reassays of either coarse material in lab or field samples and no data was modified in the database. In two instances gold values ranged between 79.8 and 173.7g/t Au and the poor repeatability is explained by the presence of coarse gold. To test for any potential coarse gold issues metallic screen fire assay (SFA) was done on 267 samples ranging from below detection to 22g/t. There was no bias between original 50g fire assay and SFA, indicating that coarse gold is not a material issue.

The sample sizes are considered to be appropriate for the nature of mineralisation within the project area.

Regarding AC samples, they are riffle split in the field to a notional 1kg sample per metre drilled, and then composited to a maximum of 4kg (4m interval). Only dry samples are collected since the drill rig is stopped when the water table is encountered.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The majority of samples were submitted to Bureau Veritas Minerals (52,736 or 69%) and Intertek (16,760 or 22%) in Cote d'Ivoire for sample preparation of a pulverised 200g subsample which was then assayed for gold by 50g fire assay with AAS finish at Intertek's laboratory in Ghana or Bureau Veritas' laboratory in Abidjan, Cote d'Ivoire. A small number of drill hole samples were sent to various other labs, 3,433 or 4% to MSA in early 2021, 1,024 or 1% samples to SGS in late 2019-early 2020, and 2,624 or 3% samples to ALS in 2018 in Cote d'Ivoire for sample preparation. MSA fire assay was done at their labs in Burkina Faso. Fire assay is considered total assay for gold and is considered appropriate for this style of mineralisation. No geophysical tools have been used to determine assay results for any elements. A portable XRF (pXRF) is used on pulps for multielement analysis. This data is used for exploration only and is not used in resource estimation. QAQC samples, consisting of a minimum of 2 blanks, 1 duplicate and 1 standard, were submitted with each drill hole. Regular reviews of the sampling and QAQC protocols were carried out by the supervising geologist to ensure all procedures were followed and best industry practice carried out. Monitoring of results of duplicates, blanks and standards is conducted each time an assay batch is uploaded to MX Deposit database. Internal laboratory QAQC checks are reported and reviewed regularly by Mako's Database Geologist. Any issues flagged through Mako's QAQC protocols are documented, and corrective action noted in the Mako database. The only QAQC issue of note is a slight lab instrument drift error that was identified as the cause for poorly performing CRM assays (just outside of 3 standard deviations) between July and September 2021. The lab has replaced the instrument. The batches were reassayed. The CRMs performed within tolerance levels. The original assays were not replaced in the database as it was determined that there was a good correlation between original

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes.	Significant intersections are routinely monitored through review of drill chip photographs and by site visits by the Chief Geologist and/or General Manager Exploration. Results are consistent with the style of mineralisation expected.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No twinning of holes was undertaken.
	Discuss any adjustment to assay data.	Primary data is collected on field sheets and then compiled on standard Excel templates for validation and data management. The database is maintained in Seequent MX Deposit.
		All samples returning assay values below detection limit are assigned a value of 0.005g/t Au (half of the lower detection limit). No other adjustments have been applied to assay data.
		AC drilling; significant intersections are routinely monitored through review of drill chip photographs and by site visits by the Chief Geologist and/or General Manager Exploration. No twinning of AC holes was undertaken in this program which is at an early stage of exploration. Primary data is collected on field sheets and then compiled on standard Excel templates for validation and data management. The database is maintained in Seequent MXDeposit.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill hole collar locations are initially set out using a hand-held GPS with a location error of +/- 5m. Elevations are extracted from digital terrain model data as handheld GPS elevations are inconsistent. Subsequent to drilling of the hole, a survey is conducted using a differential GPS (DGPS) with post processing software to obtain collar locations accurate to <1m. Over 99% of drill hole collars are surveyed with DGPS, with only 5 early drill holes not surveyed by DGPS. Down hole surveys are routinely commenced from 6m down hole depth and additional readings taken at approximately 30m intervals thereafter. A Reflex EZ-Trac tool was used from 2018 to 2022 to track the downhole alignment and a Reflex Gyro was used beginning in 2022. Both are considered appropriate downhole survey tools. The grid system used is WGS84 zone 30 north. A detailed topographic survey of the project area has not been
		AC drill hole locations are initially set out (and reported) using a handheld GPS with a location error of +/- 5m. Elevations are extracted from digital terrain model data as handheld GPS elevations are inconsistent. AC drilling is a scout method of exploration and all holes are drilled in a top to tail fashion, whereby the end of the drill hole determines the collar location for the start of the subsequent hole. The distance between holes is measured with a tape for better accuracy. Down hole surveys are not conducted on aircore drill holes.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Data in the Tchaga Deposit is based on drill holes nominally spaced on 20m section lines with the majority of holes drilled towards the southeast. Drill hole spacing on sections are generally in the order of 25m, but up to 50m in some areas. Early drilling at Tchaga was towards the east resulting in closer spaced holes where they are in proximity to the more recent southeast oriented holes. Data in the Gogbala Deposit is based on drill holes nominally spaced on 40m section lines with the majority of holes drilled to the southeast. Drill hole spacing on sections is generally in the order of 25m. Only a few early drill holes at Gogbala were towards the east resulting in closer spaced holes where they are in proximity to the southeast holes. No sample compositing was done for the reporting of exploration results however sample compositing was done for resource estimation and the methodology is described in Section 3. All exploration holes within the MRE footprint were used for Mineral Resource estimation. AC drilling is exploratory in nature and are irregularly located, as they are based on various wide-spaced exploration targets. The location of AC drill holes is shown in Appendix 4. AC drilling reported is at an early stage of exploration and has not been used to estimate any mineral resource or reserve. AC drill samples were composited in the field to a maximum 4m interval and minimum 2m interval at the bottom of the hole.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The majority of the gold mineralised veins dip moderately to steeply to the northwest (varies from NNW to WNW). Drilling is typically orientated perpendicular to the interpreted strike of mineralisation. Holes prior to NARC178 (prior to the structural study) were drilled mostly towards 090° (22%), whilst from NARC178 onwards they were drilled towards 135° (76%). The southeast drill azimuth is considered the optimal direction to traverse all vein orientations based on structural studies (examination of oriented drill core photos) conducted by Dr Kim Hein during 2020. The remaining 2% of drill holes were orientated in various other directions to obtain geological or structural information.
Sample security	The measures taken to ensure sample security.	No orientation-based sampling bias has been identified in the data to date. Samples are stored securely on the project site under supervision of security guards and/or Company personnel. Company personnel maintain chain of custody of the samples prior to collection from site by laboratory personnel. Documentation
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	records handover of samples to laboratory personnel. In 2019 an independent cursory review of RC sampling techniques and data was conducted by Derisk Geomining. As a result of the review, RC sample size was increased from a nominal 2kg to 5kg.

Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Napié maiden Mineral Resource Estimate is located within the Napié Permit. The Napié Permit (PR281) was granted to Occidental Gold SARL, a 100% owned, Ivorian registered, subsidiary of Perseus Mining Ltd, by decree No. 2012-1164 on 19th December 2012 and was valid for three years. The first, three-year, renewal of the permit was granted to Occidental Gold by decree No: 181 /MIM/DGMG DU on 19 December 2016. The second, three-year renewal was granted to Occidental Gold by decree No: 00018/MIM/DGMG on 21 March 2019. The exceptional renewal of the Napié permit for a further two years was granted to Occidental Gold SARL on 7 March 2022 by decree No: 00083/MMPE/DGMG and is currently under renewal which is expected sometime in 2025. The size of the permit is 224km². On 7th September 2017 Mako Gold Ltd signed a Farm-In and Joint Venture Agreement with Occidental Gold SARL. The agreement gives Mako the right to earn 51% of the Napié Permit by spending US\$ 1.5M on the property within three years and the right to earn 75% by sole funding the property to completion of a Feasibility
		Study. Mako achieved the 51% earn-in ahead of schedule. On 29 June 2021 Mako announced that it has signed a binding agreement with Perseus Mining Limited to acquire their 39% interest in Napié. Upon Completion of the agreement Mako will have 90% ownership of the permit. The transfer of the Napie permit from Occidental Gold SARL to Mako Côte d'Ivoire SARLU (100% owned, Ivorian registered, subsidiary of Mako God Ltd) was lodged with the Ministry of Mines on 27 July 2021.
		The Korhogo Nord permit was granted to Mako Côte d'Ivoire SARLU, a 100% owned Ivorian registered subsidiary of Mako Gold Ltd, by decree No. 2020-578 on 29 July 2020 and is valid for 4 years with two renewals of three years each. The size of the permit is 185km². The Ouangolodougou permit was granted to Mako Côte d'Ivoire SARLU, a 100% owned Ivorian registered subsidiary of Mako Gold Ltd, by decree No. 2020-938 on 25 November 2020 and is valid for 4 years with two renewals of three years each. The size of the permit is 111km².
		There are no known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration on Napié was conducted by Occidental Gold (the permit owner) and consisted of surface geochemical sampling, auger sampling, an airborne geophysical survey and interpretation, RAB drilling and limited RC drilling (2 holes). Only 2 RC drill holes from previous exploration are used in the MRE. Refer to Section 4.6 and Annexure A of Mako Gold's Prospectus lodged on the ASX on 13 April 2018 for details on previous exploration.
Geology	Deposit type, geological setting and style of mineralisation.	The Napié Permit is located within the Lower Proterozoic Birimian Daloa greenstone belt. The style of mineralisation sought is structurally controlled orogenic gold, within an interpreted shear zone related to a regional-scale shear and secondary splays.
		The Tchaga and Gogbala deposits are located along a 23km long +40ppb gold soil/auger anomaly coincident with a +30km-long shear zone, thought to be a major control for gold mineralisation. Gold mineralisation is hosted in en-echelon quartz veins and stringers and the surrounding silicified, sericite, iron-carbonate, pyrite (+/- galena and chalcopyrite) alteration halo. Mineralisation is present in all lithologies (felsic to mafic volcanoclastics, volcanic breccias and conglomerates and to a lesser extent in felsic and mafic intrusives).

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level	Drill collars are shown in the figures within the report. A summary of drill hole collar data and the interval thickness within mineralised wireframes used in the Mineral Resource Estimate are listed in Appendix 2.
	in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth hole length.	AC drill collar are shown in the figures within the report and in Appendix 4. Significant AC intervals have been reported in the body of the report and are in Appendix 4.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Reporting of exploration results uses a weighted average based on sample length and gold grade only. A nominal 0.5g/t gold cutoff grade was applied for reporting of exploration results.
	Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the	No high-grade cuts have been applied to the reporting of exploration results.
	procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	For aggregation methods and high-grade cuts related to resource estimation see Section 3.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been used for reporting exploration results.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	The gold mineralised veins used in the estimation are modelled as true thickness based on the 3D interpretation.
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Intersection lengths are reported as down hole lengths (the distance from the surface to the end of the hole, as measured along the drill trace).
renguis	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures contained within this report. Cross section of AC drilling not included as is at an early stage of exploration and may be misleading.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All samples in drill holes are assayed. All exploration results have been previously reported with the exception of intercepts of 1m less than 1g/t Au which were not considered significant standalone intercepts and therefore were not reported. The announcement dates of previously reported exploration results are referenced in the text.
		All AC drill results are reported for intercepts of greater than 4m at 0.25g/t Au. All rock chip results are reported in Appendix 5

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Preliminary test work was carried out on 17 samples of primary and oxide mineralisation from the Tchaga Deposit. Samples were submitted to Bureau Veritas Mineral Laboratories in Abidjan for 24-hour, 0.5kg direct cyanidation bottle rolls with residues analysed by 50g fire assay. Samples were selected from five RC holes across the deposit area and from a variety of lithologies to test a representative suite of gold mineralised intervals. Gold recoveries averaged 94.7% for primary mineralisation and 94.3% for oxide mineralisation. See ASX announcement dated 25 Sep 2019 for further details. Pre-Mako; Occidental Gold work can be divided into the earlier Leo Shield precursor to Perseus (OCG-LS) and the later Perseus (OCG-Perseus) work. Soil Sampling OCG-LS Concession (bigger than Napie) 1997-2000. Regional stream seds at 74 sites, 222 samples collected and 148 analysed for Au at SGS Labs in Abidjan using aqua regia digestion and AA finish. Regional soil sampling every 200m on NW/SE trending tracks roughly spaced 3 to 6km apart, Dec 1997-Jan 1998 (black dots, triangles for anomalies). 567 soil samples and 84 regional laterite / pisolite samples for a total of 651 samples were collected and analysed for Au at SGS Labs in Abidjan using aqua regia digestion and AA finish. Soil/laterite sampling every 200m on roughly 1km spaced east-west lines to cover most of the permit, April/May 1998, 1204 samples were collected and analysed for Au at SGS Labs in Abidjan using aqua regia digestion and AA finish. Soils (+1-5mm fraction) collected Sent to SGS Labs Abidjan, crushed/pulverised and 50g analysed by aqua regia digest AA finish Rock chip sampling highest result was 0.39 g/t Au, obtained from a silicified quartz-carbonate amphibolite schist. OCG-L5 thought gold mineralisation appears to be associated with quartz veins or veinlets within a very fine grained silicified ± carbonate ± silica ± garnet amphibolite schist. OCG-L5 thought gold mineralisation appears to be associated with quartz veins or veinlets within a very
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	material has been omitted from this report Mako has only systematically explored and defined Mineral Resources over 4km of the +30km long mineralised Napié Shear Zone. Further RC and DD drilling is planned to test high priority extensional targets along strike in the immediate area of Tchaga and Gogbala. Drilling is planned along strike of Gogbala East, with the highest priority being the 1km of undrilled Napié Shear that is immediately north of the deposit. The deposits remain open at depth and further drilling is planned below the relatively shallow (125 to 175m vertical depth) estimation limits. Additional drilling will target the 3km strike-length between Tchaga and Gogbala. RC drilling is ongoing at high priority regional targets, Tchaga North and Komboro, which both returned positive outstanding AC drilling results from programs completed in H1-CY22.

Section 3 - Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	Measured Group completed a cross-check of the laboratory issued analytical certificates with the assay database provided for available data. This included checks on primary fields for the Mineral Resource Estimate such as sample number and gold grade to ensure complete matches. No errors were found between the laboratory certificates and the provided database.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	The Competent Person has not visited the site due to travel restrictions. Mako Gold General Manager Exploration and representatives onsite were able to provide all information and answer questions posed by the Competent Person when necessary.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	Mineralised boundaries for the current Mineral Resource Estimate have been determined on gold grade from both RC and DD holes. Categorised box plots were used to determine the diamond core logged lithology, alteration, and mineralisation relative to gold grade to ensure a grade derived mineralisation boundary was reflective of the mineralisation. The top and bottom of mineralised intercepts have been determined by a lower grade cut-off of 0.25g/t gold (generally) to create continuity of the wireframe that represent the mineralisation boundaries. Measured Group created 3D solid wireframes from selected intervals using the Geological Model tool in Seequent Leapfrog Geo (Leapfrog). The veins were modelled using the Leapfrog Geo Vein System, and are interpreted to be semi-parallel, slightly anastomosing veins, with the more strongly mineralised veins often in the centre of the models with some minor veins branching from these (interactions modelled as terminations). The veins were discretely modelled for all prospects. Areas in Tchaga were observed to be more disconnected and anastomosing in nature and therefore veins are more frequent but shorter compared to Gogbala. Current orebody knowledge does not account for shearing or post mineral intrusives as factors effecting continuity of grade, however these are suspected, and additional future drilling is planned to

Criteria	JORC Code explanation	Commentary			
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Mineral Resource is split into 4 discrete mineralised areas; Tchaga, Gogbala North, Gogbala South and Gogbala East. The relative wireframe dimensions, number of veins, and variability in terms of continuity of each deposit is characterised in the table below.			
		Prospect	Block Model Dimensions (LxWxD expressed in metres)	No. of Veins	Comments on variability
		Tchaga	2180 x 700 x 325 Veins typically strike 45° and dip between 30° to 50° towards 315° from north to south.	92 Veins	Veins show moderate continuity along strike and to depth. Some minor veins are interpreted to be shorter, localised or disjointed. These account for assay results, without over exaggerating the mineralisation. Open at depth.
		Gogbala North	590 x 1090 x 285 Veins typically strike 32° and dip between 50° and 75° towards 302°.	70 Veins	This area shows good continuity from the drilling to date along strike and to depth. Minor amount of short, disjointed veins that may be localised. Open at depth.
		Gogbala South	560 x 1285 x 220 Veins typically strike 30° and dip between 60° and 65° towards 300°.	59 Veins	The larger Veins typically show reasonable continuity at the current drill spacing. Some veins require additional information to ascertain continuity and are currently represented as shorted, disjointed veins. Open at depth.
		Gogbala East	360 x 465 x 225 Veins typically strike 30° and dip between 60° and 65° towards 300°.	20 Veins	This is a small area with limited drilling, and hence current drill spacing supports some continuous veins and some disjointed veins. Open at depth.

Estimation and modelling techniques

The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.

The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.

The assumptions made regarding recovery of by-products.

Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).

In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.

Any assumptions behind modelling of selective mining units.

Any assumptions about correlation between variables.

Description of how the geological interpretation was used to control the resource estimates.

Discussion of basis for using or not using grade cutting or capping.

The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.

For this Mineral Resource Estimate, Measured Group has completed the following:

- 1. Geological interpretation and wireframing in Leapfrog;
- Hard boundary compositing in Leapfrog Edge Module (Leapfrog Edge);
- 3. Variography and Ordinary Kriging in Leapfrog Edge; and
- 4. Block Model Estimation in Leapfrog.

Composites were based on 2m composites. More than 99% of the drilling data within mineralised zones is sampled to 1m intervals except for rare 0.6m and 1.4m composites. 2m composites were selected as the minimum mineralisation thickness above wireframe cut-off grade and a 2m composite was determined to decrease the local gold grade variability for estimation purposes.

Variograms were generated for each of the domains (4 domains at Tchaga and 1 domain for each of the Gogbala prospects). Search ellipse and orientation reflect the parameters derived from the variography and geological analysis.

Blocks were filled in 3 passes. Pass 1 had the most rigorous requirement relating to the number of samples, search range, and sector search. Subsequent passes had incrementally more relaxed requirements and increased search ranges to allow assignment of estimated values to blocks further away from drilling results. Block hierarchy was set as Pass 1, Pass 2, and then Pass 3, with no overwriting of blocks with existing pass values.

This Mineral Resource represents the maiden Mineral Resource Estimate for the Napié project and as such, no previous estimates or mine production records are available as check estimates. To confirm the appropriateness of the ordinary kriging estimator, MIK, Unform Conditioning, Inverse Distance and Nearest Neighbour were estimated as comparison. Comparing these through Leapfrog's Swath Plots function, it was determined that the Ordinary Kriging showed the most representative estimator for the underlying composited data. A series of swath plots for each of the veins is shown in the Napié Mineral Resource Report.

Block model validation included; block statistics review, swath plots, visual inspection of grade distribution against composites, sensitivities to block size, and estimation of variable changes.

Block sizes for each of the five model areas are $5m \times 5m \times 5m$ with a subblock down to 0.3125m. Each block model was rotated to align with the strike of the dominant vein orientation interpreted from the geological modelling. Block size was selected based on drill spacing and thickness of the mineralisation.

Each of the estimation parameters for each vein within a domain was applied to the parent block of that block model.

A detailed summary of block model variables and dimensions is listed in the Napié Mineral Resource Report.

Gold is the only mineral estimated in this Mineral Resource, no other variables are assayed or modelled.

The geological modelling of the discrete veins for each deposit were used as sub-block triggers within the block model to ensure the block model estimation was representing the 3D wireframes extents only and to a relatively fine granularity.

Criteria	JORC Code explanation	Commentary Tonnages are estimated on a dry basis.			
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.				
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	Extreme outlier grades were identified by reviewing the composite histograms of gold grade for each individual vein hard boundary. A summary of the top cuts used is shown below.			
		Prospect	Compositing Top Cut (g/t)	Ordinary Kriging Top Cut (g/t)	
		Tchaga	35	Tchaga North: 3 Tchaga Central North: 20 Tchaga Central South: 10 Tchaga South: 10	
		Gogbala North	12.5	8	
		Gogbala South	12.5	8	
		Gogbala East	12.5	4	
		Estimation domains were split into the discrete veins for each deposit. These were treated as "hard boundary" domains as these boundaries were picked from drilling assays at a cut-off grade.			
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	No bottom cuts were applied. Assumptions made on mining methods for the purpose of this Mineral Resource Estimate are truck and shovel, open-pit mining operations. No mining dimensions or dilution were considered. A 5x5x5 parent block estimation was used as representing a minimum mining dimensions scenario. Areas of the 3D geological interpretation are up to 320m below depth of cover (DOC). However, the Napié Mineral Resource is limited to a maximum depth of 195m DOC. This is based on low drilling density beyond 195m DOC, appropriate depth constraints for open-pit mining, and reflects the current depth of continuous geological knowledge. A peer analysis of West African deposits with similar grades and total contained ounces shows average open-pit resource depths of over 300m DOC. To further support the 195m depth constraint, 68% of the Mineral Resource Estimate is within 100m DOC and 93% of the Mineral Resource Estimate is within 150m DOC (which is averaged for all 4 prospects). Global grades from surface to 195m depth are shown to increase with depth from 1.13g/t to 1.42g/t for the resource.			
		Resource are based on the following: Resource is open along strike, and it is anticipated to join several zones in Gogbala with in-fill drilling, significantly increasing strike length for open pit mining. Resource is open at depth, with drilling shown to intercept mineralisation interpretations down to 320m DOC. Comparing to West African peers, depth potential to +300m could be supported in future Mineral Resource Estimates with an optimised pit shell constraint with targeted confirmation drilling; and Grades are increasing with depth at all prospect sites supporting logical grade increase requirements to support deeper open-pit mining scenarios.			

Criteria	JORC Code explanation	Commentary	
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No recovery factors are considered for this Mineral Resource Estimate. The Mineral Resource is classified as Inferred. Initial gold recovery tests show good to excellent recoveries, however this data is not enough to support metallurgical modifying factor consideration to the resource at this stage.	
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No environmental, permitting, legal, title, taxation, socio- economic, marketing, or other relevant issues have been made known to the Competent Person that may affect the estimate of Mineral Resource.	
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	The density measurements from Napié are provided in the database and were used to gain an understanding of the overall variability in material density through the various oxidation states as well as ore and waste. Global average values were applied to the block model, which is appropriate for an Inferred resource. The density values applied to ore are: Oxide material, 2.09 g/cc; Transitional material 2.71 g/cc; and Fresh material, 2.75 g/cc.	
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	The Mineral Resource has been classified to a maximum confidence of Inferred at this stage due to the following considerations: • Drill spacing and mineralisation intercepts (including geostatistical performance such as number of samples, kriging efficiency, and slope regression); • Number of density and metallurgical samples; and • Open-pit optimisation study to determine approximate suitable cut-off grade and open-pit depth to support a higher resource classification considering RPEEE. The Competent Person has sufficient confidence in the database, continuity of geology and geological setting for the Napié Mineral Resource to support this classification.	
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Measured Group conducted internal peer reviews of the model including reviews on geological modelling practises, estimation practises and appropriateness, and resultant block model estimation. The internal reviewers included suitably Competent Persons for the purpose of reporting Mineral Resources as well as specialists in Leapfrog and geostatistics. Measured Group also reviewed the modelling process and outputs with the Mako Gold staff in detail. No external audits or reviews have been completed to date.	

Criteria	JORC Code explanation	Commentary
Discussion of	Where appropriate a statement of the relative accuracy and	The relative accuracy of the Mineral Resource estimate is reflected
relative	confidence level in the Mineral Resource estimate using an	in the reporting of the Mineral Resource as per the guidelines of
accuracy/	approach or procedure deemed appropriate by the Competent	the 2012 JORC Code.
confidence	Person. For example, the application of statistical or geostatistical	
	procedures to quantify the relative accuracy of the resource within	The Napié deposits are an open-pit mining target that is at a
	stated confidence limits, or, if such an approach is not deemed	relatively early to moderate stage of drilling and geological
	appropriate, a qualitative discussion of the factors that could	understanding. Selective in-fill drilling from surface and updated
	affect the relative accuracy and confidence of the estimate.	geological interpretation and modelling in 3D will add further
		confidence to the local scale geometry of the mineralisation and
	The statement should specify whether it relates to global or local	grade distributions in the resource model.
	estimates, and, if local, state the relevant tonnages, which should	
	be relevant to technical and economic evaluation. Documentation	The detail captured in this Mineral Resource Estimate maximises
	should include assumptions made and the procedures used.	the data available currently on the project and the Competent
		Person is satisfied that the model is an accurate representation of
	These statements of relative accuracy and confidence of the	the drilling data and geological interpretation at Napié to date to
	estimate should be compared with production data, where	support an Inferred Mineral Resource.
	available.	

Appendix 2 – Resource Drill Hole Database Summary (Cumulative thicknesses are based on lengths within the interpreted gold mineralised wireframes)

Tchaga Deposit

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
KHR-1	227800	1011119	303	79	-50	90	26
KHR-2	227760	1011116	303	57	-50	90	27
NADD005	227769	1011110	301	120	-55	90	36
NADD006	227848	1010804	293	123.3	-55	90	46
NADD007	227821	1010560	286	125.5	-55	90	17
NADD008	227914	1011120	305	105.4	-55	90	9
NADD009	227878	1010519	286	100.4	-55	90	19
NADD010	227893	1010519	287	120.2	-55	270	70
NADD012	227878	1010590	288	132.5	-50	150	19
NADD013	227962	1010750	293	162.2	-50	270	24
NADD014	227979	1011482	310	102.2	-50	150	5
NADD016	227819	1010719	290	174.2	-55	90	37
NADD017	227887	1010946	298	110.1	-55	270	17
NADD018	228000	1010718	293	113.5	-50	270	11
NARC015	227953	1011797	307	80	-55	90	35
NARC016	227985	1011648	309	75	-55	90	2
NARC017	227856	1010798	293	100	-55	90	42
NARC018	227934	1010802	294	50	-55	90	35
NARC019	227866	1010624	289	80	-55	90	7
NARC053	227898	1010800	293	110	-55	90	78
NARC054	227801	1010799	293	165	-55	90	57
NARC055	227882	1010850	296	135	-55	90	48
NARC056DD	227798	1010850	294	243.3	-55	90	53
NARC057	227873	1010749	292	135	-55	90	64
NARC058DD	227786	1010748	291	253.3	-55	90	85
NARC059	227912	1010950	300	150	-55	90	13
NARC060	227826	1010949	297	150	-55	90	41
NARC061	227738	1010949	297	150	-55	90	18
NARC070	227738	1010479	283	155	-55	90	15
NARC071	227674	1010480	283	150	-55	90	15
NARC072	227803	1010478	283	156	-55	90	55
NARC073	227843	1010679	289	150	-55	90	33
NARC074	227778	1010680	289	140	-55	90	26
NARC075	227714	1010681	289	150	-55	90	35
NARC076	227980	1011039	301	150	-55	90	4
NARC077	227913	1011040	303	174	-55	90	18

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC079	227998	1011119	303	150	-55	90	6
NARC080	227934	1011120	303	174	-55	90	37
NARC081	228034	1011279	308	150	-55	90	11
NARC082	227968	1011279	308	162	-55	90	30
NARC084	227982	1011440	311	180	-55	90	27
NARC085	228058	1011800	313	150	-55	90	0
NARC086	227908	1010677	291	150	-55	90	23
NARC087	228030	1011124	304	102	-55	90	1
NARC088	227858	1010479	284	120	-55	90	28
NARC089	227783	1010680	289	180	-55	90	26
NARC091	228012	1011598	309	150	-55	90	1
NARC093	227981	1011598	309	180	-55	90	6
NARC094	228007	1011797	311	150	-55	90	5
NARC095	227744	1010479	283	150	-55	90	17
NARC096	227680	1010480	283	166	-55	90	14
NARC100	227775	1010478	283	100	-55	90	48
NARC101	227848	1010747	291	175	-55	90	82
NARC102	227904	1010750	293	125	-55	90	61
NARC103	227844	1010849	294	160	-55	90	51
NARC104	227913	1010849	295	103	-55	90	51
NARC105	227739	1010998	298	100	-55	90	2
NARC106	227920	1011799	307	110	-55	90	55
NARC107DD	227815	1010520	286	155.5	-55	90	95
NARC108	227785	1010520	286	30	-55	90	6
NARC109DD	227774	1010520	284	198.1	-55	90	26
NARC110	227739	1011198	302	100	-55	90	16
NARC111	227682	1011198	302	104	-55	90	8
NARC112	227968	1011399	310	80	-55	90	1
NARC114	227943	1011437	309	100	-55	90	1
NARC115	227893	1011159	304	83	-55	90	1
NARC116	227933	1011159	305	100	-55	90	13
NARC117	227704	1010999	298	125	-55	90	14
NARC118	227894	1011117	302	100	-55	90	20
NARC119	227732	1011120	302	106	-55	90	24
NARC120	227893	1010439	284	80	-55	90	4
NARC121	227833	1010439	282	120	-55	90	13
NARC122	227794	1010439	282	84	-55	90	7
NARC123	227733	1010439	283	111	-55	90	15
NARC124	227851	1010519	285	119	-55	90	76
NARC125	227936	1010598	290	110	-55	90	2
NARC126DD	227905	1010598	289	150.2	-55	90	15
NARC127	227951	1010641	291	100	-55	90	16

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC128	227920	1010641	290	100	-55	90	18
NARC129	227878	1010679	290	80	-55	90	17
NARC130	227928	1010719	293	100	-55	90	27
NARC131DD	227898	1010719	292	155	-55	90	14
NARC132	227869	1010719	291	100	-55	90	10
NARC133	227839	1010719	291	103	-55	90	24
NARC134	227923	1010751	293	70	-55	90	31
NARC135	227945	1010775	294	100	-55	90	52
NARC136	227911	1010775	294	108	-55	90	72
NARC137	227879	1010775	293	150	-55	90	112
NARC138	227846	1010774	292	166	-55	90	90
NARC139	227944	1010890	296	96	-55	90	19
NARC140	227914	1010890	296	90	-55	90	20
NARC141	227943	1011000	299	80	-55	90	18
NARC142	227797	1011000	298	100	-55	90	16
NARC143	227956	1011076	302	100	-55	90	19
NARC144	227761	1011099	300	100	-55	90	20
NARC145	227953	1011120	303	62	-50	90	26
NARC146	227945	1011199	305	70	-55	90	9
NARC147	227926	1011199	305	104	-55	90	17
NARC148	227991	1011278	309	110	-55	90	14
NARC149	227929	1011280	310	80	-55	90	1
NARC150	228025	1011358	310	100	-55	90	17
NARC151	227983	1011558	309	100	-55	90	7
NARC153	227533	1011376	313	102	-55	105	14
NARC154	227859	1012050	308	106	-55	90	20
NARC155	227819	1012049	305	144	-55	90	6
NARC156	227764	1010439	282	100	-55	90	37
NARC157	227959	1010890	296	100	-55	90	16
NARC158	227929	1010890	296	120	-55	90	29
NARC162	227884	1012050	308	90	-55	90	23
NARC163	227896	1010500	286	123	-55	270	29
NARC164	228016	1010655	292	114	-55	270	0
NARC165	227866	1010559	287	110	-55	90	23
NARC166	228019	1010618	291	102	-55	270	6
NARC167	228094	1010888	298	100	-55	90	0
NARC168	227868	1011990	308	120	-55	90	3
NARC170	227994	1011860	313	102	-55	270	3
NARC174	227925	1011700	306	107	-55	90	5
NARC176	227493	1010499	285	100	-55	90	2
NARC178	227852	1010546	286	118	-55	135	50
NARC179	227839	1010557	286	102	-55	135	35

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC180	227809	1010504	284	78	-55	135	49
NARC182	227961	1011116	304	100	-55	135	19
NARC183	227949	1011130	304	102	-55	135	19
NARC184	227969	1011136	304	103	-55	135	37
NARC185	227984	1011149	304	110	-55	135	20
NARC186	228046	1011260	308	100	-55	135	5
NARC187	228032	1011271	308	100	-55	135	10
NARC188	228017	1011286	309	102	-55	135	14
NARC189	227930	1010777	294	100	-55	135	55
NARC190	227917	1010790	294	105	-55	135	66
NARC191	227899	1010838	294	133	-55	135	78
NARC192	228013	1011462	312	109	-55	135	10
NARC193	227989	1011481	311	100	-55	135	3
NARC195	227768	1010488	283	87	-55	135	11
NARC197	227946	1011103	303	65	-55	135	16
NARC198	227926	1011124	303	100	-55	135	19
NARC199	227798	1010483	283	86	-55	135	44
NARC200	227774	1010511	284	75	-55	135	1
NARC201	227763	1010524	284	81	-55	135	9
NARC202	227880	1010517	286	60	-60	135	25
NARC203DD	227831	1010568	286	176.3	-60	135	48
NARC204	227896	1010500	286	90	-60	135	25
NARC205	227857	1010456	283	103	-55	135	27
NARC206	227834	1010480	283	18	-55	135	15
NARC207	227835	1010478	283	103	-55	135	36
NARC208	227918	1010508	287	100	-60	135	20
NARC209	227895	1010533	287	100	-55	135	40
NARC210	227877	1010552	288	105	-55	135	71
NARC211	227860	1010570	288	120	-55	135	69
NARC212	227846	1010586	287	130	-55	135	61
NARC213	227885	1010483	285	78	-55	135	12
NARC214	227854	1010516	285	120	-55	135	53
NARC216	227839	1010532	285	118	-55	135	62
NARC217	227815	1010557	288	120	-55	135	48
NARC218	227917	1010538	288	80	-55	135	8
NARC219	227898	1010558	288	100	-55	135	7
NARC220	227867	1010589	288	127	-55	135	22
NARC221	227868	1010473	284	79	-55	135	9
NARC222	227850	1010492	284	110	-55	135	21
NARC223	227832	1010510	284	80	-55	135	26
NARC224	227817	1010525	285	110	-55	135	27
NARC225	228011	1011152	304	72	-55	135	24

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC226	227989	1011172	304	100	-55	135	13
NARC227	227968	1011194	305	124	-55	135	12
NARC228	227948	1011216	305	159	-55	135	17
NARC229	227883	1011166	304	125	-55	135	18
NARC230	227910	1011169	304	113	-55	135	12
NARC231	227948	1011158	305	109	-55	135	15
NARC232	227927	1011180	305	125	-55	135	13
NARC233	227962	1011170	304	99	-55	135	16
NARC236	227928	1011093	303	60	-55	135	10
NARC237	227907	1011114	303	84	-55	135	10
NARC238	227886	1011136	303	100	-55	135	10
NARC239	227864	1011157	303	125	-55	135	12
NARC241	228005	1011186	305	90	-55	135	6
NARC242	227984	1011208	306	106	-55	135	24
NARC243	227963	1011229	306	132	-55	135	47
NARC244DD	227893	1010858	295	285.2	-55	180	122
NARC245	227899	1010591	289	36	-60	135	4
NARC246	227900	1010590	289	81	-60	135	8
NARC247	227882	1010609	289	96	-60	135	11
NARC248	227947	1010848	295	100	-55	135	48
NARC251	227974	1010850	296	120	-55	135	5
NARC252	227868	1011039	299	102	-55	135	14
NARC253	227901	1011006	301	100	-55	135	9
NARC254	227905	1010944	298	103	-55	135	13
NARC255	227926	1010898	296	160	-55	135	24
NARC256	227912	1011079	302	65	-55	135	22
NARC257	227891	1011101	301	110	-55	135	9
NARC258	227869	1011122	301	120	-55	135	6
NARC259	227898	1011064	300	98	-55	135	15
NARC260	227877	1011085	301	111	-55	135	17
NARC261	227847	1011060	300	107	-55	135	27
NARC262	227827	1011081	299	125	-55	135	41
NARC263	227738	1010659	288	113	-55	135	28
NARC264	227702	1010695	289	144	-55	135	25
NARC266	227839	1010730	291	130	-55	135	22
NARC267	227809	1010760	292	106	-55	135	7
NARC268	227828	1010793	293	101	-55	135	23
NARC285	227804	1010964	298	131	-55	135	49
NARC286	227769	1010996	298	97	-55	135	38
NARC287	227837	1010955	298	60	-55	135	13
NARC288	227841	1011150	302	98	-65	135	1
NARC289	227839	1011152	302	152	-65	135	8

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC290	227815	1011174	302	180	-65	135	23
NARC301	227902	1011200	304	140	-65	135	18
NARC302	227874	1011232	304	181	-65	135	26
NARC303	227982	1011347	310	132	-65	135	18
NARC304	227963	1011255	308	165	-65	135	44
NARC305	227926	1011291	307	185	-65	135	26
NARC308	227761	1010749	291	132	-65	135	25
NARC309	227729	1011150	302	140	-65	135	19
NARC331	228061	1011325	310	105	-65	135	1
NARC306DD	227761	1010553	289	285.6	-65	135	87
NARC307DD	227788	1010581	286	235.6	-65	135	78
NARC332	228025	1011362	310	150	-65	135	17
NARC333DD	227798	1010826	294	259.2	-65	135	65
NARC334DD	227898	1010924	297	190.3	-65	135	8
NARC335DD	227829	1010595	287	201.6	-65	135	28
NARC181DD	227797	1010517	284	189.4	-55	135	74
NARC337	227895	1011829	306	177	-55	135	80
NARC338	227916	1011864	307	149	-55	135	29
NARC339	227986	1011851	310	104	-55	135	31
NARC340	227951	1011888	309	108	-55	135	20
NARC381	227910	1011930	308	107	-55	135	18
NARC382	227874	1011963	307	110	-55	135	11
NARC383	227903	1011991	308	105	-55	135	12
NARC379	227655	1010262	284	105	-55	135	38
NARC384	227845	1012052	307	149	-55	135	24
NARC385	227930	1012022	309	102	-55	135	7
NARC386	227905	1012050	310	110	-55	135	14
NARC380	227621	1010299	285	110	-55	135	21
NARC387	227959	1012048	310	100	-55	135	8
NARC388DD	227948	1011384	310	234.4	-55	135	36
NARC391	227754	1010391	284	101	-55	135	13
NARC392	227718	1010425	284	105	-55	135	16
NARC394	227766	1010434	282	104	-55	135	12
NARC395	227709	1010491	283	100	-55	135	11
NARC396	227731	1010496	283	105	-55	135	8
NARC249DD	227881	1010915	297	204.4	-55	135	25
NARC397	227980	1010614	290	70	-55	135	9
NARC398	227955	1010640	291	85	-55	135	9
NARC399	227917	1010680	291	125	-55	135	34
NARC390	227924	1012086	311	107	-55	135	2
NARC402	228028	1011245	308	135	-55	135	18
NARC403	227989	1011284	308	106	-55	135	20

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC407	227568	1011366	307	100	-55	135	18
NARC408	227517	1011414	315	108	-55	135	15
NARC409	227622	1011426	305	111	-55	135	9
NARC410	227586	1011464	305	100	-55	135	4
NARC411	227716	1010738	291	94	-65	135	5
NARC413	227667	1010726	290	125	-65	135	7
NARC414	227725	1010784	292	115	-65	135	5
NARC417DD	227718	1010539	284	180.1	-65	135	17
NARC418DD	227728	1010584	285	195.4	-65	135	28
NARC419DD	227753	1010614	287	225.7	-65	135	43
NARC404DD	227947	1011328	309	209.8	-55	135	40
NARC405DD	227758	1010922	296	225.35	-55	135	47
NARC420	227897	1011605	306	93	-55	135	10
NARC421	227862	1011639	305	115	-55	135	2
NARC422	227827	1011673	303	144	-55	135	2
NARC423	227791	1011710	301	111	-55	135	1
NARC424	227953	1011660	309	84	-55	135	5
NARC425	227919	1011695	305	141	-55	135	7
NARC426	227883	1011730	304	144	-55	135	13
NARC427	227847	1011765	303	142	-55	135	9
NARC428	227727	1011435	303	100	-55	135	4
NARC429	227690	1011473	303	111	-55	135	5
NARC430	227781	1011492	304	90	-55	135	3
NARC431	227745	1011527	303	123	-55	135	1
NARC433	227622	1011540	303	116	-55	135	1
NARC436	227839	1011547	304	121	-55	135	6
NARC437	227806	1011584	302	124	-55	135	1
NARC438	227768	1011618	302	148	-55	135	1
NARC441	227885	1011392	307	104	-55	135	11
NARC442	227853	1011422	306	105	-55	135	9
NARC443	227820	1011455	305	108	-55	135	2
NARC445	227862	1010283	281	111	-55	135	7
NARC446	227826	1010320	282	124	-55	135	9
NARC449	227908	1011475	307	110	-55	135	1
NARC450	227873	1011511	305	120	-55	135	5
NARC451	227587	1010336	285	120	-55	135	1
NARC452	227704	1010324	284	100	-55	135	3
NARC453	227669	1010360	285	110	-55	135	19
NARC454	227633	1010397	284	118	-55	135	19
NARC455	227905	1010350	284	100	-55	135	1
NARC456	227850	1010408	283	100	-55	135	12
NARC457	227822	1010437	282	102	-55	135	8

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC458	227954	1011426	310	109	-55	135	3
NARC459	227881	1010380	284	100	-55	135	1
NARC460	227684	1010290	284	100	-55	135	4
NARC461	227656	1010318	285	121	-55	135	8
NARC462	227629	1010347	284	125	-55	135	6
NARC463	227601	1010375	284	120	-55	135	4
NARC464	227519	1010201	283	120	-55	135	3
NARC465	227481	1010234	284	120	-55	135	3
NARC466	227558	1010221	283	110	-55	135	17
NARC468	227587	1010248	283	100	-55	135	12
NARC469	227560	1010277	285	122	-55	135	32
NARC470	227641	1010247	284	100	-55	135	7
NARC471	227614	1010276	285	122	-55	135	2
NARC472	227587	1010306	285	127	-55	135	13
NARC473	227761	1010270	283	106	-55	135	5
NARC474	227732	1010300	284	100	-55	135	3
NARC475	227577	1010455	284	100	-55	135	6
NARC477	227751	1010337	284	100	-55	135	13
NARC478	227722	1010366	284	103	-55	135	9
NARC479	227694	1010394	284	114	-55	135	2
NARC480	227660	1010431	283	104	-55	135	5
NARC481	227602	1010485	284	120	-55	135	3
NARC482	227631	1010457	284	102	-55	135	3
NARC483	227660	1010486	284	100	-55	135	3
NARC484	227631	1010515	284	100	-55	135	1
NARC485	227604	1010543	285	103	-55	135	2
NARC486	227985	1011119	304	91	-55	135	18
NARC487	227475	1011344	313	130	-55	135	17
NARC488	227546	1011275	313	120	-55	135	10
NARC489	227589	1010132	287	121	-55	135	2
NARC490	227548	1010159	287	120	-55	135	7
NARC491	227600	1010165	287	100	-55	135	8
NARC492	227512	1011308	313	100	-55	135	9
NARC493	227764	1011059	299	162	-55	135	22
NARC494	227702	1011121	301	127	-55	135	27
NARC497	227827	1010628	287	145	-55	135	55
NARC498	227583	1011238	312	102	-55	135	20
NARC499	227666	1011158	302	153	-55	135	10
NARC500	227913	1011757	307	150	-55	135	29
NARC501	227878	1011792	307	171	-55	135	22
NARC502DD	227833	1011895	307	285	-55	135	15
NARC503	227798	1011930	306	140	-55	135	5

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC504	227883	1011901	308	145	-55	135	56
NARC505	227847	1011937	307	143	-55	135	14
NARC506	227921	1011948	310	140	-55	135	28
NARC507	227789	1010920	296	136	-55	135	64
NARC508	227803	1010937	296	155	-55	135	43
NARC509	227729	1010953	296	117	-55	135	11
NARC510	227697	1010916	296	170	-55	135	20
NARC511	227887	1011335	309	87	-55	135	10
NARC440DD	227917	1011360	311	224.2	-55	135	54
NARC310DD	227755	1011181	303	231.5	-55	135	43
NARC336DD	227930	1011797	306	180.2	-55	135	51
NARC415DD	227771	1010796	295	235	-65	135	44
NARC416DD	227757	1010872	295	182.4	-65	135	24
NARC541	227602	1010004	287	100	-55	135	4
NARC542	227526	1010136	285	120	-55	135	13
NARC543	227561	1010102	287	120	-55	135	12
NARC546	227704	1010178	285	121	-55	135	3
NARC560	227668	1011039	299	220	-55	135	5
NARC562	227418	1011293	305	194	-55	135	2
NARC563	227565	1011422	307	120	-55	135	4
NARC564DD	227664	1010530	284	227.4	-55	135	7
NARC566DD	227479	1010295	285	210.3	-55	135	9
NARC467DD	227524	1010255	285	200.75	-55	135	36
NARC559DD	227755	1010956	297	390.3	-55	135	49
NARC565DD	227525	1010309	284	237.4	-55	135	22
NARC265DD	227757	1010692	289	276.3	-55	135	65
NARC393DD	227687	1010458	283	195.3	-55	135	24
NARC444DD	227790	1010355	283	192.1	-55	135	12
NARC476DD	227606	1010427	284	192.2	-55	135	9
NARC512DD	227858	1011364	308	303.4	-55	135	30
NARC621DD	227736	1010626	286	333.6	-70	135	56

Gogbala Deposit

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC021	226083	1005201	291	40	-55	90	16
NARC022	226065	1005200	291	65	-55	90	9
NARC023	226049	1005200	292	100	-55	90	16

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC024	225618	1004157	287	50	-55	90	10
NARC025	225594	1004157	287	100	-55	90	11
NARC032	225526	1003400	288	50	-55	90	1
NARC033	225549	1003399	289	100	-55	90	18
NARC034	225540	1003999	290	80	-55	90	15
NARC035	225556	1003999	290	30	-55	90	16
NARC036	225580	1004156	287	75	-55	90	12
NARC062	225560	1003842	289	155	-55	90	1
NARC063	225479	1003838	292	155	-55	90	16
NARC064	225791	1004482	291	155	-55	90	5
NARC065	225706	1004478	291	160	-55	90	27
NARC066	225981	1004998	294	155	-55	90	27
NARC067	225896	1004997	296	155	-55	90	12
NARC068	226122	1005400	288	155	-55	90	27
NARC069	226038	1005400	291	163	-55	90	25
NARC291	225462	1003865	292	100	-55	135	4
NARC292	225432	1003891	293	109	-55	135	17
NARC293	225403	1003919	292	100	-55	135	7
NARC294DD	225374	1003946	291	201.13	-55	135	21
NARC295	225533	1004032	289	100	-55	135	22
NARC296	225502	1004070	288	135	-55	135	22
NARC297	225764	1004224	287	130	-55	135	2
NARC298	225728	1004260	287	111	-55	135	4
NARC299	225692	1004295	287	100	-55	135	8
NARC300	225657	1004330	288	105	-55	135	2
NARC311	225743	1004455	290	105	-55	135	5
NARC312	225708	1004490	292	111	-55	135	15
NARC313	225958	1005019	294	102	-55	135	11
NARC315	226078	1005042	292	109	-55	135	12
NARC316	226044	1005076	292	51	-55	135	2
NARC317	226007	1005111	293	117	-55	135	15
NARC318	226041	1005073	292	123	-55	135	12
NARC319DD	225971	1005146	293	177	-55	135	10
NARC320	226134	1005199	292	105	-55	135	6
NARC321	226098	1005234	292	100	-55	135	12
NARC322	226062	1005270	292	95	-55	135	11
NARC323	226206	1005411	284	111	-55	135	26
NARC324	226169	1005446	284	110	-55	135	30
NARC325	225608	1003447	283	103	-55	135	11
NARC326	225572	1003483	285	100	-55	135	10
NARC327	225536	1003519	285	100	-55	135	1
NARC328	225501	1003554	287	102	-55	135	1

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC330	226240	1005377	284	100	-55	135	12
NARC341	225717	1004129	289	100	-55	135	4
NARC342	225680	1004165	287	89	-55	135	14
NARC343	225645	1004199	288	104	-55	135	1
NARC365	226133	1005482	285	94	-55	135	21
NARC513	225497	1004037	288	135	-55	135	15
NARC514	225554	1003985	290	100	-55	135	12
NARC516	225536	1004002	289	100	-55	135	3
NARC517	225552	1004041	289	100	-55	135	7
NARC518	225572	1004020	290	75	-55	135	12
NARC519	225524	1003871	291	75	-55	135	3
NARC520	225488	1003906	292	103	-55	135	12
NARC521	225448	1003945	291	145	-55	135	6
NARC522	225432	1003852	293	113	-55	135	7
NARC523	225456	1003830	293	100	-55	135	20
NARC524	225743	1004502	292	137	-55	135	15
NARC525	225700	1004544	292	160	-55	135	4
NARC526	225678	1004507	292	159	-55	135	1
NARC527	225971	1004983	294	106	-55	135	11
NARC528	225941	1005011	295	124	-55	135	15
NARC529	225989	1005047	293	80	-55	135	7
NARC530	225970	1005067	294	131	-55	135	19
NARC531	226018	1005073	293	83	-55	135	20
NARC532	225989	1005100	293	127	-55	135	10
NARC533	226046	1005100	292	103	-55	135	6
NARC534	226025	1005122	292	128	-55	135	14
NARC535	226070	1005188	291	115	-55	135	31
NARC536DD	226034	1005224	291	156.6	-55	135	16
NARC537	226114	1005255	289	85	-55	135	22
NARC538	226093	1005277	289	103	-55	135	15
NARC539	226089	1005422	287	148	-55	135	44
NARC540	226111	1005499	285	162	-55	135	34
NARC549	225410	1003874	294	159	-55	135	12
NARC550	225522	1003928	291	100	-55	135	9
NARC551	225493	1003955	291	120	-55	135	20
NARC552	225445	1003782	294	82	-55	135	20
NARC553	225425	1003800	294	100	-55	135	38
NARC554	225589	1004061	289	80	-55	135	19
NARC555	225567	1004081	288	120	-55	135	3
NARC556	225727	1004401	290	100	-55	135	5
NARC557	225689	1004438	291	143	-55	135	9
NARC558DD	225671	1004568	294	222.7	-55	135	16

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC568	225461	1003763	294	68	-55	135	27
NARC569	225396	1003828	294	140	-55	135	9
NARC570	225398	1003771	294	131	-55	135	14
NARC571	225426	1003742	294	105	-55	135	6
NARC572	225454	1003713	293	80	-55	135	2
NARC573	225425	1003686	295	105	-55	135	5
NARC574	225398	1003712	295	114	-55	135	16
NARC575	225367	1003740	295	150	-55	135	6
NARC576	225477	1003808	293	60	-55	135	25
NARC577	225505	1003889	292	100	-55	135	11
NARC578	225462	1003981	290	128	-55	135	17
NARC579	226084	1005524	286	105	-55	135	13
NARC581	225312	1003684	297	150	-55	135	10
NARC583	225255	1003629	298	168	-55	135	1
NARC584	225450	1003656	291	156	-55	135	4
NARC592	225476	1003627	290	106	-55	135	6
NARC595	225769	1004527	292	94	-55	135	13
NARC596	225742	1004559	293	102	-55	135	1
NARC597	226046	1005324	290	190	-55	135	22
NARC598	226098	1005335	288	144	-55	135	25
NARC599	226060	1005373	288	160	-55	135	9
NARC604	225851	1004897	297	138	-55	135	6
NARC605DD	225811	1004936	298	192	-55	135	8
NARC606	225514	1004074	288	99	-55	135	11
NARC607	225470	1004095	290	167	-55	135	9
NARC608	225561	1004196	288	107	-55	135	15
NARC609	225891	1004975	296	124	-55	135	24
NARC610	225860	1005004	297	190	-55	135	12
NARC620	226051	1005553	287	136	-55	135	15
NARC622	226108	1005441	285	82	-55	135	4
NARC623	226080	1005470	286	168	-55	135	24
NARC624DD	226052	1005499	287	224.5	-55	135	33
NARC625	225379	1003902	294	164	-55	135	12
NARC626DD	225335	1003881	294	223.44	-55	135	7
NARC627DD	225937	1005143	294	203.7	-55	135	15
NARC628	225337	1003830	296	185	-55	135	5
NARC629	225278	1003718	297	169	-55	135	14
NARC630	225911	1005060	295	190	-65	135	13
NARC631	225337	1003714	296	143	-55	135	19
NARC632	225307	1003747	296	167	-55	135	9
NARC633	225338	1003772	296	130	-55	135	1
NARC634	225522	1003980	290	101	-55	135	15

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC635	225491	1004014	289	83	-55	135	3
NARC636	225576	1004042	289	83	-55	135	15
NARC637	225550	1004071	288	80	-55	135	8
NARC638	225604	1004068	289	80	-55	135	7
NARC639	225574	1004097	288	100	-55	135	8
NARC640	225546	1004183	289	100	-55	135	18
NARC641	225520	1004210	290	165	-55	135	7
NARC642	225589	1004193	288	92	-55	135	3
NARC643	225533	1004253	290	164	-55	135	8
NARC644	225590	1004253	289	128	-55	135	15
NARC645	225755	1004376	288	82	-55	135	8
NARC646	225663	1004468	292	197	-55	135	30
NARC647	225817	1004431	289	99	-55	135	12
NARC648DD	225937	1005096	294	176.73	-55	135	7
NARC649	225995	1005146	293	121	-55	135	8
NARC650	226059	1005135	291	105	-55	135	26
NARC651	226029	1005166	292	118	-55	135	19
NARC652DD	226002	1005195	292	180.3	-55	135	14
NARC653	226002	1005250	292	94	-55	135	2
NARC654	226023	1005292	291	95	-55	135	8
NARC656	226181	1005475	283	113	-55	135	35
NARC657	226158	1005495	284	149	-55	135	16
NARC658	226133	1005523	284	78	-55	135	5
NARC659DD	226103	1005552	285	220.5	-55	135	14
NARC660	225889	1004917	296	114	-55	135	22
NARC661DD	225863	1004944	297	174.5	-55	135	17
NARC662	225916	1004946	296	90	-55	135	10
NARC663	225937	1004977	295	83	-55	135	9
NARC664	225908	1005008	296	130	-55	135	7
NARC665	226054	1004916	293	120	-55	135	9
NARC666	226018	1004954	293	162	-55	135	11
NARC667	226104	1004983	292	165	-55	135	3
NARC668	226076	1005012	292	139	-55	135	20
NARC669	226133	1005008	292	110	-55	135	3
NARC670	226105	1005039	292	122	-55	135	23
NARC671	226076	1005068	292	161	-55	135	12
NARC672	226126	1005298	288	100	-55	135	17
NARC673	226126	1005357	287	159	-55	135	23
NARC674	226097	1005386	287	139	-55	135	13
NARC675	226295	1005586	285	100	-55	135	22
NARC676	226259	1005623	286	100	-55	135	8
NARC677	226226	1005657	286	111	-55	135	14

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC678	226152	1005328	287	104	-55	135	16
NARC692	225647	1003463	282	136	-55	135	27
NARC693	225618	1003492	285	100	-55	135	8
NARC694	225533	1003355	289	69	-55	135	1
NARC695	225504	1003382	289	103	-55	135	12
NARC696	225703	1003520	283	100	-55	135	6
NARC697	225673	1003549	284	106	-55	135	21
NARC698	225645	1003575	286	140	-55	135	16
NARC699DD	225506	1004277	291	194.1	-60	135	8
NARC701DD	225545	1004124	288	183.2	-55	135	4
NARC702	225507	1004160	290	83.0	-55	135	7
NARC703DD	225646	1004251	287	108.0	-55	135	17
NARC704DD	225611	1004287	288	148.1	-55	135	18
NARC705DD	225612	1004226	289	96.0	-55	135	4
NARC706DD	225557	1004281	290	171.4	-55	135	5
NARC707	225636	1004038	290	180	-55	135	7
NARC708	225862	1004834	296	130	-55	135	8
NARC709	225932	1004818	295	145	-55	135	8
NARC710	225889	1004859	296	73	-55	135	1
NARC711	225915	1004891	295	89	-55	135	12
NARC712	225831	1004973	298	192	-55	135	16
NARC713	225997	1005432	290	151	-55	135	16
NARC714	225723	1004348	288	85	-55	135	9
NARC715	225680	1004389	290	136	-55	135	3
NARC716	225758	1004420	289	106	-55	135	9
NARC717	225987	1005503	290	150	-55	135	10
NARC718	225678	1004224	286	64	-55	135	13
NARC719	225799	1004556	292	86	-55	135	18
NARC720	226212	1005556	284	136	-55	135	25
NARC722DD	226015	1005588	289	192	-55	135	11
NARC723	225606	1004126	287	172	-55	135	2
NARC725	226179	1005594	284	126	-55	135	9
NARC726	226076	1004960	292	110	-55	135	12
NARC727	226048	1004988	292	147	-55	135	10
NARC728	226044	1005048	292	175	-55	135	17
NARC729	226105	1005015	290	94	-55	135	1
NARC730	226023	1005530	289	132	-55	135	14
NARC731	226050	1005605	287	184	-55	135	1
NARC732	225676	1004280	287	117	-55	135	3
NARC733	225641	1004314	288	150	-55	135	10
NARC734	225803	1004885	298	172	-55	135	5
NARC735	225501	1004119	289	166	-55	135	22

Drill Hole ID	Easting	Northing	Elevation	Max Depth m	Dip	Azimuth	Cumulative Mineral Intercept Thickness m
NARC736	225459	1004160	291	178	-55	135	2
NARC737	225480	1004202	290	136	-55	135	1
NARC738	225975	1005396	292	94	-55	135	8
NARC739	225933	1005440	292	140	-55	135	14

Appendix 3 – Exploration Results Drilled After June 2022 Collar table

Drill Hole ID	Easting	Northing	Elevation	Depth m	Dip	Azimuth	Hole Type
NADD020	227,644	1,010,704	291	485.7	-65	135	DD
NARC741	225,884	1,020,696	335	130	-55	135	RC
NARC743	225,873	1,020,645	334	100	-55	135	RC
NARC744	225,944	1,020,709	338	105	-55	135	RC
NARC746	227,832	1,025,457	332	100	-55	135	RC
NARC748	227,736	1,025,335	334	152	-55	135	RC
NARC751	229,929	1,022,198	324	110	-55	90	RC
NARC753	230,041	1,021,953	328	120	-55	135	RC
NARC756	233,194	1,026,551	334	100	-55	180	RC
NARC757	233,030	1,028,526	304	114	-55	180	RC
NARC758	233,090	1,028,532	303	111	-55	180	RC
NARC759	232,751	1,028,264	303	100	-55	180	RC
NARC761	229,630	1,028,447	336	132	-55	315	RC
NARC763	225,649	1,002,804	284	100	-60	90	RC
NARC765	225,598	1,003,203	287	102	-60	90	RC
NARC766	225,549	1,002,803	284	100	-60	90	RC
NARC767	225,498	1,002,803	283	100	-60	90	RC
NARC769	225,399	1,002,803	284	100	-60	90	RC
NARC770	225,349	1,002,803	285	103	-60	90	RC
NARC771	225,497	1,003,203	287	100	-60	90	RC
NARC772	225,448	1,003,203	286	100	-60	90	RC
NARC773	225,498	1,002,403	288	100	-60	90	RC
NARC775	225,398	1,002,402	291	100	-60	90	RC
NARC776	225,350	1,002,403	292	100	-60	90	RC
NARC777DD	225,301	1,002,403	293	198.3	-60	90	RCDD
NARC778	225,249	1,002,407	294	100	-60	90	RC
NARC779	227,947	1,012,802	311	100	-60	90	RC
NARC781	225,348	1,002,004	290	100	-60	90	RC
NARC783	225,246	1,002,003	287	100	-60	90	RC
NARC784	225,197	1,001,999	287	100	-60	90	RC
NARC789	227,898	1,014,000	320	100	-60	90	RC
NARC793	227,795	1,013,603	323	100	-60	90	RC
NARC795	227,697	1,014,401	325	102	-60	90	RC
NARC802	227,746	1,014,003	318	100	-60	90	RC
NARC803	227,844	1,014,802	336	100	-60	90	RC
NARC804	227,748	1,013,606	317	100	-60	90	RC
NARC807	227,899	1,014,802	338	100	-60	90	RC
NARC810	227,999	1,015,202	343	102	-60	90	RC
NARC812	227,949	1,014,804	339	100	-60	270	RC
NARC815	228,097	1,015,604	350	100	-60	270	RC

Drill Hole ID	Easting	Northing	Elevation	Depth m	Dip	Azimuth	Hole Type
NARC817	226,945	1,015,002	306	100	-60	90	RC
NARC818	226,897	1,015,004	302	100	-60	90	RC
NARC819	226,844	1,015,005	303	100	-60	90	RC
NARC826DD	227,253	1,010,599	287	166.5	-60	90	RCDD
NARC827DD	227,300	1,010,604	288	150.5	-60	90	RCDD
NARC828	227,200	1,010,600	287	100	-60	90	RC
NARC829DD	227,351	1,010,606	288	183.4	-60	90	RCDD
NARC830	227,403	1,010,604	288	100	-60	90	RC
NARC831	227,450	1,013,005	304	100	-60	90	RC
NARC833	227,346	1,013,010	308	100	-60	90	RC
NARC837	226,900	1,012,808	293	100	-60	90	RC
NARC839	226,850	1,012,808	294	100	-60	90	RC

Intercepts table >0.5 g/t Au

Hole number	From	То	Length	Intercept
NADD020	9.60	10.60	1.00	1m @ 1.4g/t
NADD020	14.60	18.60	4.00	4m @ 0.76g/t
NADD020	28.00	29.00	1.00	1m @ 1.14g/t
NADD020	42.00	44.00	2.00	2m @ 1.16g/t
NADD020	53.00	76.00	23.00	23m @ 1.01g/t
NADD020	83.00	86.00	3.00	3m @ 0.78g/t
NADD020	226.80	229.00	2.20	2.2m @ 1.01g/t
NADD020	232.00	243.40	11.40	11.4m @ 0.54g/t
NADD020	262.40	263.50	1.10	1.1m @ 1.5g/t
NADD020	268.00	270.00	2.00	2m @ 1g/t
NADD020	302.00	304.00	2.00	2m @ 0.86g/t
NADD020	307.00	308.00	1.00	1m @ 1.3g/t
NADD020	316.00	318.00	2.00	2m @ 1g/t
NADD020	338.40	339.50	1.10	1.1m @ 1.45g/t
NADD020	355.50	356.65	1.15	1.15m @ 3.64g/t
NADD020	385.00	386.00	1.00	1m @ 1.08g/t
NADD020	397.00	398.00	1.00	1m @ 1.72g/t
NADD020	416.80	421.00	4.20	4.2m @ 0.57g/t
NADD020	425.00	432.70	7.70	7.7m @ 1.24g/t
NADD020	436.10	465.00	28.90	28.9m @ 1.17g/t
NADD020	468.50	469.20	0.70	0.7m @ 1.41g/t
NARC741	67.00	76.00	9.00	9m @ 3.26g/t
NARC741	86.00	87.00	1.00	1m @ 30.47g/t
NARC743	74.00	75.00	1.00	1m @ 8.45g/t
NARC744	43.00	46.00	3.00	3m @ 1.02g/t
NARC746	28.00	29.00	1.00	1m @ 3.54g/t
NARC746	33.00	35.00	2.00	2m @ 0.68g/t

Hole number	From	То	Length	Intercept
NARC748	22.00	23.00	1.00	1m @ 1.09g/t
NARC751	61.00	62.00	1.00	1m @ 1.76g/t
NARC753	56.00	61.00	5.00	5m @ 1.64g/t
NARC753	102.00	103.00	1.00	1m @ 2.14g/t
NARC756	0.00	1.00	1.00	1m @ 2.69g/t
NARC757	59.00	60.00	1.00	1m @ 1.58g/t
NARC758	63.00	67.00	4.00	4m @ 0.62g/t
NARC759	53.00	54.00	1.00	1m @ 1.06g/t
NARC761	106.00	107.00	1.00	1m @ 1.14g/t
NARC763	50.00	51.00	1.00	1m @ 1.7g/t
NARC765	17.00	19.00	2.00	2m @ 0.76g/t
NARC765	40.00	41.00	1.00	1m @ 1.29g/t
NARC765	98.00	101.00	3.00	3m @ 0.66g/t
NARC766	5.00	10.00	5.00	5m @ 0.88g/t
NARC766	39.00	41.00	2.00	2m @ 0.95g/t
NARC766	72.00	74.00	2.00	2m @ 0.96g/t
NARC767	43.00	45.00	2.00	2m @ 0.91g/t
NARC767	68.00	69.00	1.00	1m @ 8.7g/t
NARC767	80.00	82.00	2.00	2m @ 1.38g/t
NARC769	41.00	42.00	1.00	1m @ 5.62g/t
NARC770	44.00	45.00	1.00	1m @ 1g/t
NARC771	39.00	40.00	1.00	1m @ 0.95g/t
NARC772	63.00	64.00	1.00	1m @ 2.47g/t
NARC773	52.00	54.00	2.00	2m @ 0.8g/t
NARC775	0.00	1.00	1.00	1m @ 0.89g/t
NARC775	15.00	16.00	1.00	1m @ 1.03g/t
NARC775	59.00	60.00	1.00	1m @ 2.22g/t
NARC776	53.00	54.00	1.00	1m @ 1.07g/t
NARC776	79.00	88.00	9.00	9m @ 1.39g/t
NARC777DD	0.00	2.00	2.00	2m @ 1.06g/t
NARC777DD	24.00	27.00	3.00	3m @ 1.12g/t
NARC777DD	127.00	132.00	5.00	5m @ 1.02g/t
NARC777DD	144.30	146.30	2.00	2m @ 1.22g/t
NARC778	62.00	68.00	6.00	6m @ 6g/t
NARC779	37.00	38.00	1.00	1m @ 1.17g/t
NARC781	63.00	66.00	3.00	3m @ 0.59g/t
NARC783	1.00	5.00	4.00	4m @ 1.47g/t
NARC783	9.00	11.00	2.00	2m @ 1.36g/t
NARC784	2.00	4.00	2.00	2m @ 1.05g/t
NARC784	69.00	74.00	5.00	5m @ 1.33g/t
NARC789	9.00	10.00	1.00	1m @ 2.08g/t
NARC793	21.00	27.00	6.00	6m @ 0.62g/t
NARC795	15.00	16.00	1.00	1m @ 1.18g/t

Hole number	From	То	Length	Intercept
NARC795	81.00	82.00	1.00	1m @ 1.5g/t
NARC802	27.00	28.00	1.00	1m @ 3.09g/t
NARC802	33.00	35.00	2.00	2m @ 0.61g/t
NARC803	21.00	22.00	1.00	1m @ 3.94g/t
NARC803	50.00	51.00	1.00	1m @ 1.29g/t
NARC804	74.00	75.00	1.00	1m @ 0.93g/t
NARC807	83.00	87.00	4.00	4m @ 1.34g/t
NARC807	90.00	92.00	2.00	2m @ 0.63g/t
NARC810	19.00	27.00	8.00	8m @ 2.23g/t
NARC810	44.00	45.00	1.00	1m @ 1.22g/t
NARC812	7.00	9.00	2.00	2m @ 0.75g/t
NARC812	41.00	42.00	1.00	1m @ 1.32g/t
NARC815	88.00	90.00	2.00	2m @ 4.27g/t
NARC815	95.00	97.00	2.00	2m @ 0.91g/t
NARC817	67.00	68.00	1.00	1m @ 1.17g/t
NARC818	58.00	59.00	1.00	1m @ 1.58g/t
NARC819	6.00	7.00	1.00	1m @ 44.86g/t
NARC826DD	23.00	26.00	3.00	3m @ 0.86g/t
NARC826DD	150.00	153.30	3.30	3.3m @ 0.82g/t
NARC827DD	61.00	64.00	3.00	3m @ 1.14g/t
NARC828	56.00	58.00	2.00	2m @ 0.88g/t
NARC829DD	54.00	56.00	2.00	2m @ 1.91g/t
NARC830	91.00	97.00	6.00	6m @ 6.03g/t
NARC831	15.00	17.00	2.00	2m @ 1.21g/t
NARC833	47.00	48.00	1.00	1m @ 1.78g/t
NARC837	3.00	7.00	4.00	4m @ 1.05g/t
NARC839	19.00	22.00	3.00	3m @ 1.11g/t

Appendix 3 – Aircore hole details Collar table

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth
NAAC0120	233,050	1,026,275	328	5	-60	135
NAAC0001	229,484	1,028,603	335	43	-60	135
NAAC0003	229,511	1,028,569	336	44	-60	135
NAAC0004	229,533	1,028,553	337	42	-60	135
NAAC0009	229,606	1,028,467	343	36	-60	135
NAAC0019	229,772	1,028,322	331	35	-60	135
NAAC0020	232,276	1,027,721	313	15	-60	135
NAAC0021	232,282	1,027,719	313	6	-60	135
NAAC0022	232,283	1,027,717	313	8	-60	135
NAAC0023	232,287	1,027,715	313	8	-60	135
NAAC0024	232,289	1,027,712	313	12	-60	135
NAAC0026	232,297	1,027,694	314	7	-60	135
NAAC0027	232,304	1,027,688	315	12	-60	135
NAAC0028	232,295	1,027,699	314	9	-60	135
NAAC0029	232,310	1,027,682	316	12	-60	135
NAAC0030	232,313	1,027,675	316	13	-60	135
NAAC0031	232,317	1,027,672	316	12	-60	135
NAAC0036	232,382	1,027,610	316	33	-60	135
NAAC0037	232,392	1,027,598	316	25	-60	135
NAAC0038	232,402	1,027,593	316	44	-60	135
NAAC0040	232,432	1,027,565	318	37	-60	135
NAAC0043	232,473	1,027,526	316	37	-60	135
NAAC0045	233,609	1,028,053	307	43	-60	135
NAAC0046	233,621	1,028,043	312	38	-60	135
NAAC0047	233,628	1,028,024	319	40	-60	135
NAAC0048	233,650	1,028,015	318	24	-60	135
NAAC0049	233,659	1,028,004	319	40	-60	135
NAAC0055	233,743	1,027,909	310	50	-60	135
NAAC0066	233,954	1,027,703	312	44	-60	135
NAAC0067	232,727	1,026,599	331	27	-60	135
NAAC0068	232,733	1,026,587	331	20	-60	135
NAAC0069	232,743	1,026,583	331	28	-60	135
NAAC0070	232,755	1,026,577	331	25	-60	135
NAAC0084	232,870	1,026,460	330	25	-60	135
NAAC0086	232,891	1,026,448	330	17	-60	135
NAAC0092	232,936	1,026,398	330	18	-60	135
NAAC0094	232,950	1,026,380	330	17	-60	135
NAAC0095	232,952	1,026,373	330	24	-60	135
		i	i .			

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth
NAAC0097	232,963	1,026,366	330	14	-60	135
NAAC0098	232,969	1,026,358	330	16	-60	135
NAAC0099	232,973	1,026,346	329	8	-60	135
NAAC0100	232,976	1,026,349	330	12	-60	135
NAAC0101	232,978	1,026,342	329	13	-60	135
NAAC0102	232,982	1,026,341	329	17	-60	135
NAAC0104	233,000	1,026,322	328	19	-60	135
NAAC0105	233,010	1,026,319	329	12	-60	135
NAAC0111	233,026	1,026,294	328	7	-60	135
NAAC0114	233,032	1,026,289	328	6	-60	135
NAAC0116	233,041	1,026,287	328	6	-60	135
NAAC0118	233,044	1,026,280	328	10	-60	135
NAAC0126	233,070	1,026,247	326	14	-60	135
NAAC0128	230,594	1,026,602	341	25	-60	135
NAAC0140	230,746	1,026,476	335	30	-60	135
NAAC0144	230,790	1,026,439	335	40	-60	135
NAAC0149	230,862	1,026,385	338	17	-60	135
NAAC0150	230,866	1,026,373	338	23	-60	135
NAAC0151	230,875	1,026,364	340	20	-60	135
NAAC0152	230,880	1,026,358	340	26	-60	135
NAAC0153	230,891	1,026,347	342	28	-60	135
NAAC0160	227,538	1,025,535	337	37	-60	135
NAAC0163	227,576	1,025,500	336	30	-60	135
NAAC0164	227,586	1,025,490	336	32	-60	135
NAAC0165	227,597	1,025,477	336	28	-60	135
NAAC0166	227,606	1,025,465	337	30	-60	135
NAAC0168	227,631	1,025,440	337	37	-60	135
NAAC0170	227,662	1,025,423	338	31	-60	135
NAAC0171	227,670	1,025,413	338	30	-60	135
NAAC0172	227,682	1,025,400	338	36	-60	135
NAAC0173	227,691	1,025,386	338	27	-60	135
NAAC0177	227,724	1,025,351	338	19	-60	135
NAAC0184	227,550	1,024,705	341	52	-60	135
NAAC0185	227,630	1,024,620	340	47	-60	135
NAAC0186	227,583	1,024,670	340	48	-60	135
NAAC0193	228,996	1,019,962	305	30	-60	135
NAAC0194	229,010	1,019,938	305	30	-60	135
NAAC0196	229,029	1,019,919	305	29	-60	135
NAAC0201	229,083	1,019,871	306	32	-60	135
NAAC0202	229,089	1,019,856	307	25	-60	135
NAAC0203	229,096	1,019,844	307	25	-60	135

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth	
NAAC0207	229,137	1,019,805	308	21	-60	135	
NAAC0209	229,150	1,019,790	309	24	-60	135	
NAAC0211	229,169	1,019,780	311	15	-60	135	
NAAC0212	229,174	1,019,771	311	13	-60	135	
NAAC0215	229,194	1,019,742	312	28	-60	135	
NAAC0216	229,205	1,019,735	312	24	-60	135	
NAAC0217	229,215	1,019,731	312	27	-60	135	
NAAC0218	229,222	1,019,720	312	32	-60	135	
NAAC0219	229,235	1,019,710	312	30	-60	135	
NAAC0220	229,244	1,019,697	313	26	-60	135	
NAAC0221	229,250	1,019,690	313	30	-60	135	
NAAC0222	229,260	1,019,674	315	46	-60	135	
NAAC0223	229,276	1,019,660	315	33	-60	135	
NAAC0224	229,290	1,019,650	314	31	-60	135	
NAAC0225	229,301	1,019,640	314	32	-60	135	
NAAC0226	229,314	1,019,629	313	34	-60	135	
NAAC0233	229,407	1,019,532	315	34	-60	135	
NAAC0234	229,420	1,019,520	316	32	-60	135	
NAAC0239	229,488	1,019,450	317	36	-60	135	
NAAC0241	229,523	1,019,423	322	39	-60	135	
NAAC0243	229,555	1,019,407	324	37	-60	135	
NAAC0244	229,553	1,019,379	323	40	-60	135	
NAAC0245	229,571	1,019,368	321	42	-60	135	
NAAC0246	229,586	1,019,356	321	27	-60	135	
NAAC0248	229,613	1,019,332	324	49	-60	135	
NAAC0249	229,635	1,019,319	326	55	-60	135	
NAAC0251	229,671	1,019,281	325	61	-60	135	
NAAC0252	229,700	1,019,267	325	70	-60	135	
NAAC0253	227,170	1,017,260	349	78	-60	135	
NAAC0254	227,199	1,017,238	350	58	-60	135	
NAAC0255	227,216	1,017,209	351	50	-60	135	
NAAC0256	227,232	1,017,196	352	63	-60	135	
NAAC0259	227,316	1,017,110	352	22	-60	135	
NAAC0260	227,325	1,017,104	351	19	-60	135	
NAAC0261	227,333	1,017,095	350	22	-60	135	
NAAC0262	227,342	1,017,086	349	31	-60	135	
NAAC0263	227,355	1,017,075	349	25	-60	135	
NAAC0269	227,450	1,016,985	344	37	-60	135	
NAAC0271	227,477	1,016,958	344	43	-60	135	
NAAC0272	227,493	1,016,943	346	44	-60	135	
NAAC0302	229,148	1,018,197	336	39	-60	135	

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth	
NAAC0303	229,165	1,018,182	336	39	-60	135	
NAAC0305	229,191	1,018,156	335	48	-60	135	
NAAC0306	229,208	1,018,141 335		34	-60	135	
NAAC0307	229,220	1,018,130	335	55	-60	135	
NAAC0308	229,241	1,018,110	334	36	-60	135	
NAAC0311	229,281	1,018,072	334	27	-60	135	
NAAC0317	229,362	1,017,998	334	52	-60	135	
NAAC0318	229,382	1,017,975	333	48	-60	135	
NAAC0330	227,388	1,015,659	333	32	-60	135	
NAAC0331	227,396	1,015,646	332	31	-60	135	
NAAC0339	227,515	1,015,507	333	44	-60	135	
NAAC0342	227,559	1,015,453	335	48	-60	135	
NAAC0343	227,576	1,015,438	334	45	-60	135	
NAAC0010	229,616	1,028,453	345	47	-60	135	
NAAC0011	229,635	1,028,437	345	53	-60	135	
NAAC0025	232,283	1,027,711	313	34	-60	135	
NAAC0033	232,339	1,027,646	317	30	-60	135	
NAAC0041	232,453	1,027,552	317	31	-60	135	
NAAC0044	232,487	1,027,516	316	25	-60	135	
NAAC0050	233,668	1,027,987	314	42	-60	135	
NAAC0052	233,696	1,027,956	311	28	-60	135	
NAAC0054	233,720	1,027,930	310	50	-60	135	
NAAC0056	233,760	1,027,890	310	49	-60	135	
NAAC0063	233,881	1,027,760	314	75	-60	135	
NAAC0075	232,802	1,026,533	332	30	-60	135	
NAAC0081	232,849	1,026,490	331	24	-60	135	
NAAC0085	232,885	1,026,462	330	25	-60	135	
NAAC0087	232,897	1,026,440	330	24	-60	135	
NAAC0106	233,013	1,026,317	329	13	-60	135	
NAAC0108	233,017	1,026,303	328	5	-60	135	
NAAC0121	233,050	1,026,273	328	6	-60	135	
NAAC0137	230,702	1,026,507	335	30	-60	135	
NAAC0148	230,846	1,026,393	336	42	-60	135	
NAAC0155	230,909	1,026,328	343	17	-60	135	
NAAC0157	230,933	1,026,308	343	50	-60	135	
NAAC0162	227,556	1,025,509	337	30	-60	135	
NAAC0169	227,649	1,025,432	338	34	-60	135	
NAAC0181	227,495	1,024,756	341	52	-60	135	
NAAC0205	229,116	1,019,830	307	23	-60	135	
NAAC0227	229,325	1,019,616	313	33	-60	135	
NAAC0228	229,340	1,019,603	314	39	-60	135	

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth
NAAC0230	229,364	1,019,571	314	39	-60	135
NAAC0238	229,472	1,019,461	317	39	-60	135
NAAC0267	227,420	1,017,014 345		45	-60	135
NAAC0279	227,590	1,016,843	344	30	-60	135
NAAC0282	227,323	1,014,881	329	33	-60	135
NAAC0284	227,346	1,014,857	330	33	-60	135
NAAC0287	227,380	1,014,820	329	31	-60	135
NAAC0304	229,177	1,018,167	336	34	-60	135
NAAC0323	228,380	1,015,927	341	33	-60	135
NAAC0032	232,319	1,027,668	317	13	-60	135
NAAC0042	232,462	1,027,544	317	39	-60	135
NAAC0141	230,758	1,026,471	335	29	-60	135
NAAC0232	229,391	1,019,543	315	38	-60	135
NAAC0017	229,742	1,028,344	332	42	-60	135
NAAC0018	229,758	1,028,330	332	36	-60	135
NAAC0034	232,346	1,027,640	317	39	-60	135
NAAC0057	233,780	1,027,877	310	49	-60	135
NAAC0062	233,875	1,027,780	313	70	-60	135
NAAC0064	233,911	1,027,735	313	50	-60	135
NAAC0071	232,763	1,026,564	331	17	-60	135
NAAC0073	232,788	1,026,546	332	12	-60	135
NAAC0074	232,794	1,026,543	332	23	-60	135
NAAC0088	232,903	1,026,430	330	24	-60	135
NAAC0107	233,015	1,026,307	328	9	-60	135
NAAC0110	233,020	1,026,300	328	6	-60	135
NAAC0117	233,042	1,026,284	328	7	-60	135
NAAC0125	233,070	1,026,254	327	20	-60	135
NAAC0130	230,617	1,026,584	338	31	-60	135
NAAC0136	230,699	1,026,518	335	20	-60	135
NAAC0154	230,899	1,026,342	342	32	-60	135
NAAC0156	230,920	1,026,321	343	41	-60	135
NAAC0161	227,553	1,025,521	337	32	-60	135
NAAC0206	229,124	1,019,815	307	22	-60	135
NAAC0214	229,185	1,019,757	313	26	-60	135
NAAC0264	227,363	1,017,068	348	41	-60	135
NAAC0277	227,555	1,016,880	346	44	-60	135
NAAC0283	227,336	1,014,870	328	33	-60	135
NAAC0286	227,367	1,014,831	329	33	-60	135
NAAC0291	227,425	1,014,762	326	52	-60	135
NAAC0329	228,450	1,015,843	342	51	-60	135
NAAC0060	233,824	1,027,823	311	29	-60	135

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth
NAAC0112	233,031	1,026,294	328	7	-60	135
NAAC0113	233,029	1,026,286	328	6	-60	135
NAAC0012	229,653	1,028,418 339		49	-60	135
NAAC0015	229,705	1,028,373 334		45	-60	135
NAAC0035	232,361	1,027,618	317	43	-60	135
NAAC0039	232,421	1,027,580	317	37	-60	135
NAAC0061	233,830	1,027,815	311	81	-60	135
NAAC0065	233,931	1,027,720	313	53	-60	135
NAAC0080	232,843	1,026,495	331	13	-60	135
NAAC0093	232,940	1,026,392	330	15	-60	135
NAAC0119	233,046	1,026,275	328	5	-60	135
NAAC0123	233,054	1,026,268	327	18	-60	135
NAAC0127	233,081	1,026,243	326	27	-60	135
NAAC0135	230,687	1,026,523	335	30	-60	135
NAAC0142	230,768	1,026,458	335	25	-60	135
NAAC0143	230,792	1,026,434	335	34	-60	135
NAAC0147	230,831	1,026,408	336	40	-60	135
NAAC0174	227,700	1,025,375	338	24	-60	135
NAAC0195	229,019	1,019,928	305	31	-60	135
NAAC0235	229,440	1,019,500	316	33	-60	135
NAAC0250	229,655	1,019,300	325	50	-60	135
NAAC0268	227,434	1,016,999	345	44	-60	135
NAAC0275	227,539	1,016,902	347	33	-60	135
NAAC0276	227,546	1,016,890	347	35	-60	135
NAAC0296	227,481	1,014,691	324	30	-60	135
NAAC0319	229,397	1,017,958	333	40	-60	135
NAAC0333	227,418	1,015,624	332	45	-60	135
NAAC0051	233,681	1,027,969	314	37	-60	135
NAAC0182	227,513	1,024,738	341	49	-60	135
NAAC0187	227,600	1,024,653	340	39	-60	135
NAAC0229	229,350	1,019,590	314	41	-60	135
NAAC0247	229,597	1,019,350	322	46	-60	135
NAAC0258	227,274	1,017,153	351	31	-60	135
NAAC0274	227,520	1,016,917	348	46	-60	135
NAAC0281	227,313	1,014,895	327	34	-60	135
NAAC0289	227,395	1,014,796	330	35	-60	135
NAAC0292	227,443	1,014,744	744 323		-60	135
NAAC0314	229,313	1,018,043			-60	135
NAAC0315	229,322	1,018,034	334	34	-60	135
NAAC0326	228,411	1,015,888	340	35	-60	135
NAAC0328	228,431	1,015,865	341	58	-60	135

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth	
NAAC0265	227,379	1,017,054	349	57	-60	135	
NAAC0013	229,673	1,028,400	335	40	-60	135	
NAAC0072	232,775	1,026,554 331		32	-60	135	
NAAC0138	230,717	1,026,500	335	42	-60	135	
NAAC0176	227,715	1,025,357	338	18	-60	135	
NAAC0188	227,614	1,024,635	339	45	-60	135	
NAAC0197	229,037	1,019,905	306	27	-60	135	
NAAC0200	229,073	1,019,878	306	28	-60	135	
NAAC0273	227,509	1,016,928	348	30	-60	135	
NAAC0334	227,431	1,015,607	332	53	-60	135	
NAAC0058	233,794	1,027,860	310	49	-60	135	
NAAC0059	233,811	1,027,842	310	41	-60	135	
NAAC0090	232,920	1,026,413	330	22	-60	135	
NAAC0129	230,606	1,026,593	341	31	-60	135	
NAAC0145	230,806	1,026,425	335	32	-60	135	
NAAC0180	227,475	1,024,776	341	59	-60	135	
NAAC0208	229,141	1,019,800	308	22	-60	135	
NAAC0240	229,503	1,019,436	318	45	-60	135	
NAAC0285	227,355	1,014,845	329	33	-60	135	
NAAC0312	229,291	1,018,061	334	22	-60	135	
NAAC0332	227,406	1,015,636	332	30	-60	135	
NAAC0294	227,462	1,014,719	323	39	-60	135	
NAAC0016	229,724	1,028,359	333	44	-60	135	
NAAC0115	233,035	1,026,286	328	4	-60	135	
NAAC0122	233,050	1,026,271	328	6	-60	135	
NAAC0132	230,645	1,026,560	336	37	-60	135	
NAAC0134	230,671	1,026,534	335	34	-60	135	
NAAC0139	230,734	1,026,483	335	34	-60	135	
NAAC0213	229,171	1,019,765	313	22	-60	135	
NAAC0295	227,476	1,014,703	324	31	-60	135	
NAAC0298	227,500	1,014,672	327	22	-60	135	
NAAC0124	233,062	1,026,265	327	25	-60	135	
NAAC0280	227,601	1,016,832	344	39	-60	135	
NAAC0053	233,705	1,027,947	311	52	-60	135	
NAAC0082	232,855	1,026,479	331	22	-60	135	
NAAC0103	232,990	1,026,330	329	26	-60	135	
NAAC0131	230,625	1,026,574	338	41	-60	135	
NAAC0231	229,383	1,019,552	315	38	-60	135	
NAAC0278	227,573	1,016,862	344	45	-60	135	
NAAC0337	227,485	1,015,545	333	48	-60	135	
NAAC0083	232,866	1,026,472	331	23	-60	135	

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth
NAAC0175	227,707	1,025,368	338	20	-60	135
NAAC0192	227,670	1,024,580	340	34	-60	135
NAAC0270	227,463	1,016,971 344		43	-60	135
NAAC0290	227,406	1,014,783	330	50	-60	135
NAAC0293	227,451	1,014,733	324	40	-60	135
NAAC0300	228,280	1,016,039	346	50	-60	135
NAAC0336	227,468	1,015,563	333	49	-60	135
NAAC0338	227,500	1,015,527	333	50	-60	135
NAAC0313	229,300	1,018,055	334	37	-60	135
NAAC0109	233,017	1,026,299	328	6	-60	135
NAAC0327	228,420	1,015,878	340	32	-60	135
NAAC0335	227,448	1,015,587	333	61	-60	135
NAAC0341	227,542	1,015,473	335	47	-60	135
NAAC0146	230,820	1,026,416	335	30	-60	135
NAAC0309	229,253	1,018,098	334	40	-60	135
NAAC0316	229,334	1,018,021	334	56	-60	135
NAAC0014	229,688	1,028,387	334	42	-60	135
NAAC0210	229,160	1,019,787	310	25	-60	135
NAAC0236	229,452	1,019,484	317	26	-60	135
NAAC0266	227,399	1,017,034	348	54	-60	135
NAAC0322	228,369	1,015,944	341	47	-60	135
NAAC0167	227,619	1,025,453	336	41	-60	135
NAAC0257	227,256	1,017,170	351	53	-60	135
NAAC0310	229,268	1,018,083	334	37	-60	135
NAAC0158	230,947	1,026,286	344	48	-60	135
NAAC0190	227,650	1,024,604	340	34	-60	135
NAAC0079	232,841	1,026,502	331	21	-60	135
NAAC0133	230,655	1,026,547	336	41	-60	135
NAAC0198	229,054	1,019,895	306	26	-60	135
NAAC0076	232,812	1,026,527	332	21	-60	135
NAAC0183	227,530	1,024,720	341	51	-60	135
NAAC0237	229,463	1,019,473	317	36	-60	135
NAAC0199	229,063	1,019,887	306	29	-60	135
NAAC0002	229,500	1,028,586	336	47	-60	135
NAAC0242	229,541	1,019,419	323	33	-60	135
NAAC0005	229,544	1,028,536	337	34	-60	135
NAAC0204	229,110	1,019,834	307	25	-60	135
NAAC0159	230,960	1,026,262	344	45	-60	135
NAAC0178	227,730	1,025,344	338	34	-60	135
NAAC0089	232,910	1,026,420	330	25	-60	135
NAAC0091	232,925	1,026,401	329	22	-60	135

Hole number	Easting	Northing	RL	Depth	Dip	Azimuth
NAAC0189	227,565	1,024,687	340	45	-60	135
NAAC0325	228,402	1,015,899	341	31	-60	135
NAAC0321	228,341	1,015,974	342	80	-60	135
NAAC0007	229,575	1,028,504	339	57	-60	135
NAAC0179	227,742	1,025,332	338	46	-60	135
NAAC0324	228,390	1,015,915	341	33	-60	135
NAAC0340	227,530	1,015,492	335	47	-60	135
NAAC0288	227,386	1,014,809	329	34	-60	135
NAAC0299	228,262	1,016,056	346	49	-60	135
NAAC0078	232,830	1,026,512	332	25	-60	135
NAAC0191	227,660	1,024,592	340	33	-60	135
NAAC0320	228,320	1,015,996	343	59	-60	135
NAAC0301	228,298	1,016,019	344	68	-60	135
NAAC0006	229,558	1,028,525	338	63	-60	135
NAAC0008	229,591	1,028,484 341		46	-60	135
NAAC0077	232,822	1,026,518 332		22	-60	135
NAAC0297	227,490	1,014,680	327	23	-60	135

Intercepts > 0.25 g/t Au

Hole number	From depth	To depth	Total m	Avg Au	Interval Au_at 0.25g/t COG
NAAC0005	32	34	2	0.42	2m @ 0.42g/t
NAAC0006	32	36	4	1.1	4m @ 1.1g/t
NAAC0007	28	32	4	0.28	4m @ 0.28g/t
NAAC0008	0	4	4	1.2	4m @ 1.2g/t
NAAC0076	19	21	2	0.36	2m @ 0.36g/t
NAAC0077	16	20	4	1.93	4m @ 1.93g/t
NAAC0078	8	12	4	0.78	4m @ 0.78g/t
NAAC0089	8	12	4	0.26	4m @ 0.26g/t
NAAC0091	12	16	4	0.26	4m @ 0.26g/t
NAAC0179	4	8	4	0.28	4m @ 0.28g/t
NAAC0189	32	36	4	0.26	4m @ 0.26g/t
NAAC0191	12	16	4	0.8	4m @ 0.8g/t
NAAC0288	16	24	8	0.46	8m @ 0.46g/t
NAAC0297	0	4	4	101.31	4m @ 101.31g/t
NAAC0299	4	8	4	0.39	4m @ 0.39g/t
NAAC0299	28	49	21	0.32	21m @ 0.32g/t
NAAC0301	16	32	16	0.51	16m @ 0.51g/t
NAAC0301	60	64	4	0.25	4m @ 0.25g/t
NAAC0320	56	59	3	1.17	3m @ 1.17g/t
NAAC0321	0	4	4	0.27	4m @ 0.27g/t

Hole number	From depth	To depth	Total m	Avg Au	Interval Au_at 0.25g/t COG
NAAC0324	16	20	4	0.35	4m @ 0.35g/t
NAAC0325	0	4	4	0.26	4m @ 0.26g/t
NAAC0340	24	28	4	0.49	4m @ 0.49g/t

Appendix 5 – Summary of rock chip sampling result over 0.5g/t Au

Sample No.	East (WGS84)	North (WGS84)	Method	Lith	Au (g/t)
142250	225954	1020670	SPOIL	QVN	170
142272	227084	1020830	SPOIL	QVN	41.92
142249	225944	1020652	SPOIL	QVN	6.27
142274	225906	1021381	SPOIL	QVN	4.63
142209	229650	1020619	SPOIL	QVN	3.48
142228	229885	1020072	SPOIL	QVN	1.82
142208	229642	1020626	SPOIL	QVN	1.63
142276	225914	1021384	SPOIL	QVN	1.54
142244	230008	1020418	SPOIL	SCO	1.51
142266	227085	1020827	SPOIL	QVN	1.1
142207	229642	1020623	SPOIL	QVN	1.09
142210	229657	1020658	SPOIL	QVN	1.03
142275	225907	1021382	SPOIL	QVN	0.99
142279	225923	1021370	SPOIL	QVN	0.84
142248	225933	1020653	SPOIL	VXY	0.68
142229	229883	1020073	SPOIL	QVN	0.66
142263	227072	1020828	SPOIL	QVN	0.6
142264	227357	1020947	SPOIL	QVN	0.51

QVN - quartz vein SCO- conglomerate VXY – pyroclastic breccia