

7 March 2025

ASX Market Announcements Office

Amendment to Market Announcement titled 'Edjudina Gold Project, WA – Inferred JORC Gold Resource for Historic Leach Pads'

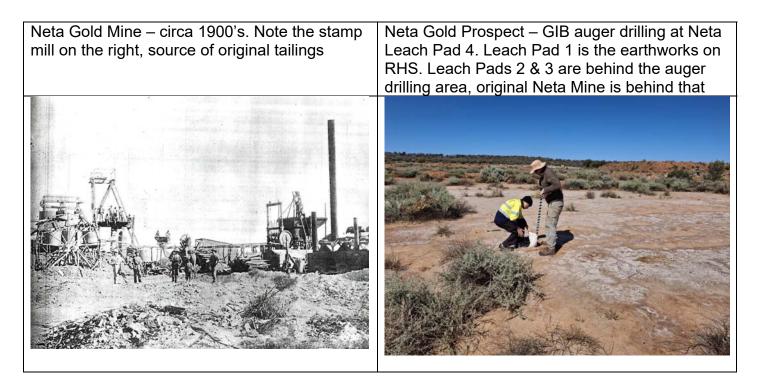
Gibb River Diamonds Limited (GIB) is releasing the enclosed amended market announcement titled 'Edjudina Gold Project, WA. Inferred JORC Gold Resource for Historic Leach Pads', originally announced to the ASX on 6 March 2025.

The sole material change to the original announcement is the inclusion of the section titled '2.1 Summary of Resource Parameters', which summarises various information already set out in JORC Table 1 to the original announcement, in accordance with ASX Listing Rule 5.8.1.

Yours Sincerely

Ju Richards

Jim Richards Executive Chairman Gibb River Diamonds Limited Tel: +61 8 9422 9500 www.gibbriverdiamonds.com



Edjudina Gold Project, WA Inferred JORC Gold Resource for Historic Leach Pads 24,000 tonnes @ 1.51g/t for 1,200 oz Au

HIGHLIGHTS

- Maiden JORC Inferred Resource of 24,800 tonnes Au @ 1.51g/t for 1,200 Ounces Au at historic leach pads at the Edjudina Gold Project situated in the Eastern Goldfields of WA
- Leach pads are situated above the natural ground surface and are easily accessible. They can be picked up with a front-end loader and placed directly onto a road train for transportation to a mill
- Metallurgical cyanide bottle roll testing indicates a recoverable gold grade of 1.0g/t
- This leach pads resource complements and is in addition to the main JORC Indicated and Inferred Resource at the Neta Prospect of 378,000 tonnes @1.9g/t for 24,000 oz Au which includes an Indicated Resource of 110,000 tonnes @ 2.2g/t for 8,000 oz Au¹
- GIB is currently progressing permitting and JV discussions for a Mine & Haul operation at the Neta Gold Prospect, using toll treatment at a third-party mill (pending commercial contracts). This is the Company's current priority, further updates will follow. This resource announcement complements this Mine & Haul plan by expanding the resource at Edjudina

1.0 Introduction

Gibb River Diamonds Limited ('GIB' or the 'Company') is pleased to announce a JORC Inferred Resource for historic heap leach pads on the Company's Edjudina Gold Project. The project is situated in the heart of Western Australia's Eastern Goldfields.

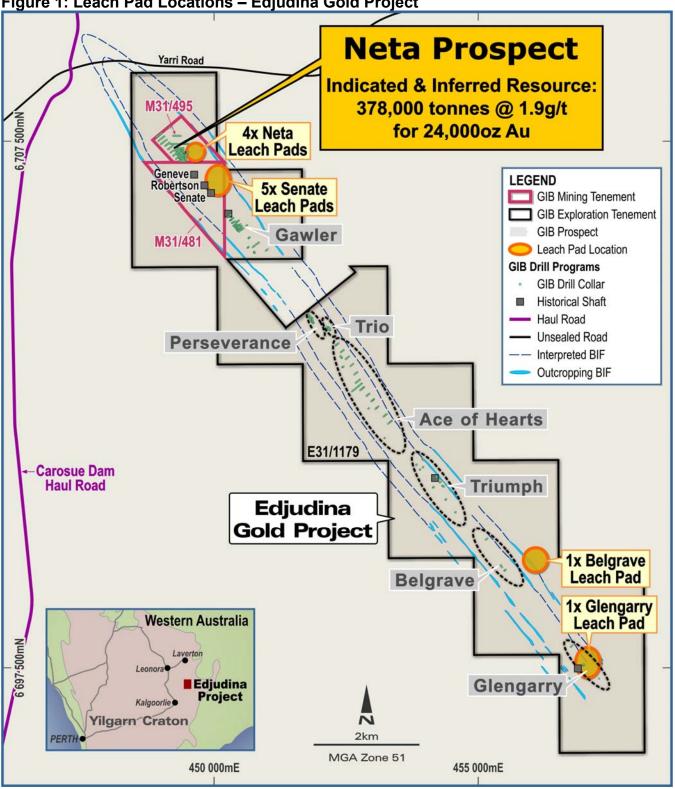
1.1 Inferred Gold Resource – Edjudina Leach Pads

From auger drilling data, satellite imagery, Digital Terrain Modelling data and metallurgical testing^{4,5} (cyanide bottle rolls), GIB has calculated a JORC Inferred Resource for the Edjudina Gold Project leach pads of:

Table 1: Edjudina Leach Pads – Inferred Gold Resource:

Tonnes (t)	Au arade (a/t)	Contained Au (oz)	Au Recovery (%)	Recoverable Au	Recoverable Au (oz)	
			Au Recovery (///	grade (g/t)	(oz)	
24,800	1.51	1,200	66.3	1.0	780	

Rounding errors may occur Table 2 gives a detailed breakdown of this resource


These historic leach pads consist of material which has undergone previous treatment and recovery processes as follows:

- 1890s to the 1930s: high grade material mined at Edjudina was crushed and treated by various locally sited, privately operated stamp mills, with the tailings from these operations remaining at Edjudina
- 1980s: the original tailings were (in-part) re-crushed and stacked into a low-lying series of piles underlain by an impermeable membrane of black plastic. These piles were then retreated using cyanide heap leaching to recover gold.
- Present day: these heap leach pads are still present and have undergone further weathering since the 1980's. These tailings still contain significant amounts of unrecovered gold mineralisation and form the JORC resource in this report

The leach pads are situated above the natural ground surface, bunded by soil walls, and are easily accessible. They can be picked up using a front-end loader and placed directly onto a road train for transportation to a gold mill.

Mr Richards is of the opinion that using the assessment and recording criteria in Appendix C (JORC Table 1) and as discussed in detail in the body of this report, that the Inferred Resource has reasonable prospects for eventual economic extraction.

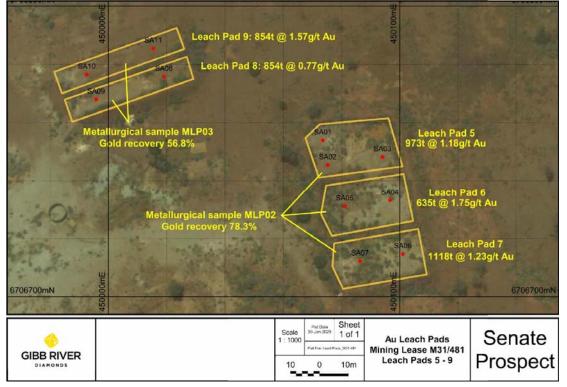

Figure 1: Leach Pad Locations – Edjudina Gold Project

Figure 2: Neta leach pads 1 to 4 with auger hole locations and potential Neta pit outline

Figure 3: Senate leach pads 5 to 9 and auger hole locations

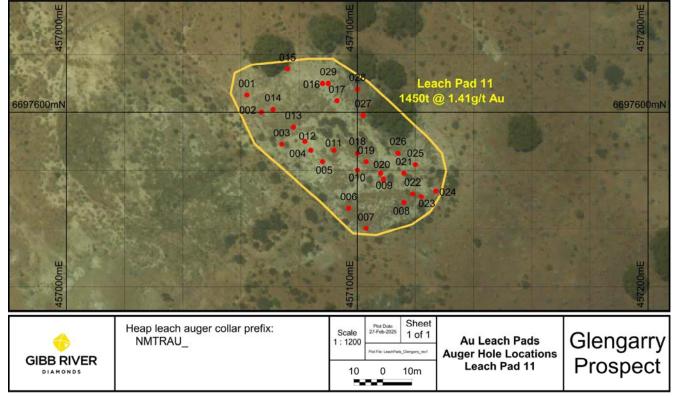


Figure 4: Belgrave leach pad 10 and auger hole locations

Figure 5: Glengarry leach pad 11 and auger hole locations

2.0 Resource Data, Sampling & Calculations Methodology

2.1 Summary of Resource Parameters

• **Geology and geological interpretation:** the leach pad material is derived from gold mineralisation that occurs along the line of Edjudina workings (Figure 1) which consists of parallel, mainly quartz, with lesser limonite-chlorite-argillic clay, veins which are conformable with the host rock. In parts, the quartz veining has been described as 'kidney reefs' due to the boudinage effect of structural deformation on the quartz veins.

The Inferred Resource leach pad material consists of material which was mined from the geology and mineralogy described above from circa the 1890's to the 1930's. The mined material has undergone previous crushing, grinding, and treatment and recovery processes as outlined in para 1.1 of this report and can be considered relatively homogeneous and fine grained derivations of the originally treated material.

• The criteria used for classification, including drill and data spacing and distribution. This includes separately identifying the drill spacing used to classify each category of mineral resources (inferred, indicated and measured) where estimates for more than one category of mineral resource are reported; the drill spacing used for this Inferred Resource is shown in Table A below and are best illustrated in Figures 2, 3, 4 and 5 which show the drill spacing diagrammatically and with the annotated hole numbers. Should further clarification be needed, Appendix A has the UTM co-ordinates for every drill hole, with hole numbers. These drill spacings are considered appropriate and representative for the Inferred Resource classification used in this report in the context of the style of mineralisation, which is relatively homogeneous tailings mineralisation.

Prospect	Leach Pad	Drill Hole Distances
		(metres)
Neta	Pad 1	10x10
Neta	Pad 2	10x10
Neta	Pad 3	10x10
Neta	Pad 4	10x10
Senate	Pad 5_6m x 18m	6x18
Senate	Pad 6 16m	16 (two holes only)
Senate	Pad 7 14m	14 (two holes only)
Senate	Pad 8 25m	25 (two holes only)
Senate	Pad 9 24m	24 (two holes only)
Belgrave	Pad 10	8x6
Glengarry	Pad 11	appx 10x10

Table A: Summary of Leach Pad Drill Spacing

 Cut-off grade(s) including the basis for the selected cut-off grade(s): the style of mineralisation is a relatively homogeneous, tailings mineralisation which has been further moved and re-treated at least once and in which there is not the same degree of statistical variation (see Appendix B) compared to a conventional gold deposit. For this reason, no top or bottom cut is used.

2.2 Resource Data and Calculations

There are 11 historic heap leach pads within the Company's Edjudina Gold Project (Figure 1), comprising:

- Neta Prospect four pads on M31/495. Figure 2
- Senate Prospect five pads on M31/481. Figure 3
- Belgrave Prospect one pad on E31/1179. Figure 4
- Glengarry Prospect one pad on E31/1179. Figure 5
- A further leach pad at Glengarry has not been included in the resource because it requires further assessment work. It is estimated to be smaller than Leach Pad 11.

All pads are within easy access of the Pinjin Road, and nine of them are within 800m of GIB's Neta gold deposit.

In October 2019 Nexus Minerals Limited (Nexus) undertook a 137-hole auger sampling program targeting seven historic tailings leach pads at the Neta, Belgrave and Glengarry prospects at what is now GIB's Edjudina Gold Project (Figure 1). Sampling was undertaken using a powered hand auger with sample intervals of 0 to 1m and, where hole depth is >1m, 1.01m to end of hole (EOH).

A Nexus geologist was present to quality control every hole to ensure no contamination with underlying material. Sampling was undertaken using a metal scoop to collect a representative section through the drill cutting cone around the drill hole. Samples were analysed for gold (50g fire assay) at Intertek Genalysis as lab job number 1918.0/1918375.

In December 2024 GIB completed a 12-hole hand auger campaign at the five Senate leach pads on the Company's recently-acquired mining lease M31/481 (Figure 1). Samples were collected using a spiral auger or heavy sand bit. All samples were dry, with sample intervals of 0-1m (where leach pad depth is >1m) and 1.01m to EOH. Samples were analysed for gold (50g fire assay) at Intertek Genalysis as lab job number 6.3/2421814.

Hole SA09 on leach pad 8 was prevented from reaching the base of the leach pad by a hard clay layer at 30cm. For this hole GIB has assumed a thickness of 1.60m, which is the same thickness as the three adjacent holes (Figure 3).

To calculate this Inferred Resource GIB has:

- Compiled length-weighted assays for all auger holes and separated auger holes into individual leach pad cells
- Calculated the area of each leach pad cell using 10cm-detail LIDAR and aerial photography flown in 2012
- Calculated the average depth of tailings and lengthweighted average Au (g/t) from the auger data for each leach pad
- Calculated the total volume of each leach pad [area (m²) x average depth of tailings]
- Calculated the gold endowment in each leach pad [volume x bulk density x average lengthweighted Au assay of all the holes within that leach pad]
- Applied gold recoveries from bottle roll testwork (para 3.0) to calculate recoverable gold.

Leach pad	Broopoot	Tanamant	Depth of	Leach Pad I	Dimensions	Volume	Bulk	Tonnes	Au grade	Contained	Au Recovery	Recoverable Au	Recoverable Au
number	Prospect	Tenement	Tailings (m)	X (m)	Y (m)	(m ³)	Density	(t)	(g/t)	Au (oz)	(%)	grade (g/t)	(oz)
1			1.66	39	42.5	2,756	1.6	4,409	1.11	157	55.3 ^A	0.62	98
2	Neta	M31/495	1.39	42	39	2,281	1.6	3,649	1.69	198		1.12	131
3	INCLA	M31/493	1.19	43	41	2,095	1.6	3,352	1.48	159	66.3 ^B	0.98	106
4			1.26	61	45	3,455	1.6	5,529	1.76	313		1.17	207
5			1.20	Area:	507m ²	608	1.6	973	1.18	37		0.92	29
6			0.80	Area:	496m ²	397	1.6	635	1.75	36	78.3 ^B	1.37	28
7	Senate	M31/481	1.45	Area:	482m ²	699	1.6	1,118	1.23	44		0.96	35
8		-	1.60	44.5	7.5	534	1.6	854	0.77	21	56.8 ^B	0.44	12
9		-	1.60	44.5	7.5	534	1.6	854	1.57	43	50.8	0.89	24
10	Belgrave	E31/1179	2.22	42	13.3	1,240	1.6	1,984	2.07	132	61.2 ^c	1.27	75
11	Glengarry	E31/1179	0.32	Area: 2	2830m ²	906	1.6	1,450	1.41	66	61.2 ^c	0.86	37
TOTAL EDJUDINA LEACH PAD MINERALISATION:				15,505		24,808	1.51	1,207	66.3	0.98	783		

Table 2: Contained and Recoverable Gold, Edjudina Heap Leach Pads

^AAu Recovery based upon Cyanide Leach Testwork and auger drilling conducted by Nexus Minerals Limited, sample 'NETA 1'. P80 grind was 125 microns ^BGold recoveries based upon GIB auger and bottle roll data (P80 grind to 75 microns)

^c Au Recovery based upon Cyanide Leach Testwork and auger drilling conducted by Nexus Minerals Limited, sample 'TRG 1' (composite of Belgrave (named Triumph by Nexus) and Glengarry). P80 grind was 125 microns

Leach pads which have an area rather than X and Y dimensions are irregularly shaped

NB: Rounding errors may occur

3.0 Metallurgical Testwork – Cyanide Bottle Rolls

Two phases of metallurgical testwork in the form of cyanide bottle rolls have been conducted over the Edjudina leach pads. This information has been used to estimate gold recoveries as summarised in Tables 2 & 3:

- **Phase 1: Nexus metallurgical testwork** on leach pads 1, 10 and 11. This work is summarised in the Nexus Metallurgical Testwork Report dated September 2020⁴
- Phase 2: GIB metallurgical testwork on leach pads 2, 3, 4, 5, 6, 7, 8, and 9. This work is summarised within this report

Prospect Area	Company	Leach pads	Met Sample	Head grade	Au recovery	Reagen	ts (kg/t)
Prospect Area	pect Area Company		Number(s)	Au (g/t)	(%)*	NaCN	Lime
Neta	Nexus	1	NETA 1	1.13	55.3	0.15	0.96
Neta	GIB	2, 3, 4	MPL01	1.61	66.3	0.07	0.41
Neta	Nexus	2, 3, 4	NETA 2, 3 & 4	1.56	64.1	0.17	0.78
Senate	GIB	5, 6, 7	MPL02	0.91	78.3	0.08	0.26
Senate	GIB	8, 9	MPL03	1.06	56.8	0.14	0.32
Belgrave-Glengarry	Nexus	10, 11	TRG 1	2.00	60.1	0.25	1.18

Table 3: Edjudina Leach Pads – Metallurgical Testing Samples & Results

* 48 Hour Bottle Roll

The Neta 2, 3 & 4 sample results are an average of the three bottle roll samples

The cyanide bottle roll recovery testing information is presented in Table 3 and provides useful comparative data between the Nexus and GIB testwork.

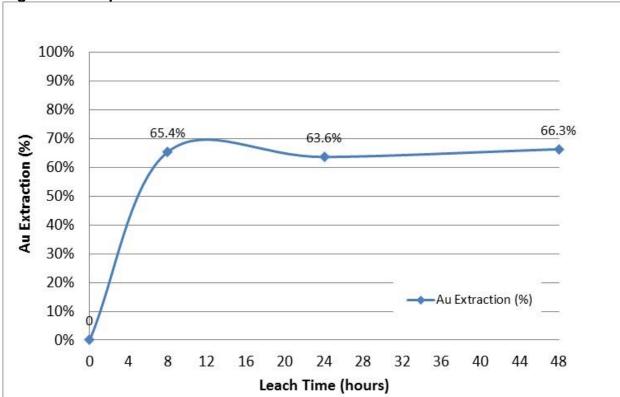
3.1 Phase 1: Nexus Metallurgical Testwork

In September 2020, Nexus undertook bottle roll testwork on the four Neta leach pads 1 to 4 (four samples named 'Neta 1 to 4' by Nexus) and a composite sample from the Belgrave/Glengarry leach pads (one sample named 'TRG1' by Nexus).

The Nexus bottle roll recoveries on Neta leach pads 2, 3 and 4 average 64.1% (48 hours). The GIB composite sample bottle roll recovery for the same leach pads (an average of leach pads 2, 3 and 4) is 66.3% (also 48 hours).

Therefore, it is observed that the average Nexus gold recovery is lower than the average GIB gold recovery for these three leach pads (Table 3). The most likely reason for this difference is that the Nexus testwork used a 125µm grind size, compared to GIB's 75µm grind size.

3.2 Phase 2 – GIB Metallurgical Testwork


In December 2024 GIB geologists collected three composite metallurgical samples of handaugered material from leach pads 2 to 9 at Neta and Senate. These samples were tested using fire assay for head grades and cyanide bottle rolls for recoveries. Samples and results are summarised in Tables 2 and 3.

The GIB samples MLP02 and MLP03 were collected from the Senate leach pads on M31/481 (Figure 3). Unlike the other leach pads in this report, these Senate leach pads (5 to 9) were not previously sampled by Nexus, and the GIB auger drilling is the only assay data available for these leach pads and this is what has been used in this report.

The GIB composite samples MLP01, MLP02 and MLP03 delivered to Nagrom Metallurgical laboratory for cyanide bottle roll testing⁵ used the following parameters:

- Head grade assay
- Grind size 75µm
- 500g sample
- Initial cyanide 500ppm
- Au extraction taken at 8hr, 24hr and 48hr

This work has not been optimised and there is significant opportunity to adjust the testwork parameters to potentially increase gold recovery. Sample bottle roll gold extractions vs time are given below:

Figure 6: Sample MPL01 Gold Extraction vs Time

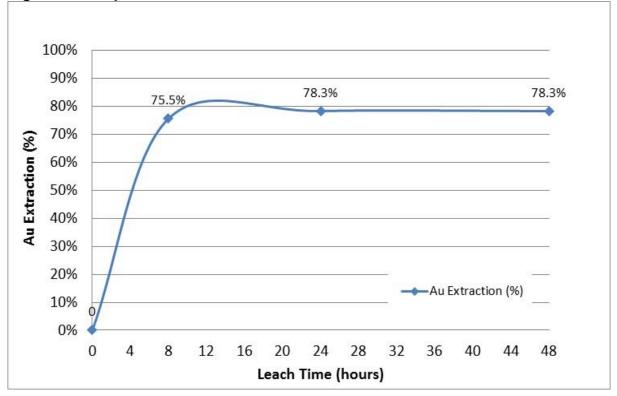


Figure 7: Sample MPL02 Gold Extraction vs Time

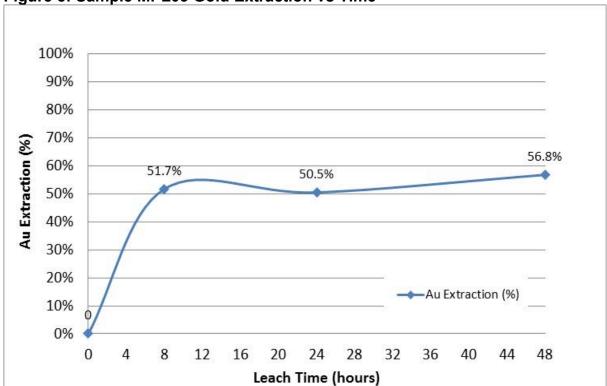


Figure 8: Sample MPL03 Gold Extraction vs Time

3.3 Grade Variation at Senate Leach Pads 5 to 9

GIB's gold analyses show that there is significant grade and recovery variation between adjacent leach pads at Senate (Figure 3 and Table 2).

The tailings at the Senate leach pads 8 to 9 (MLP03) appear very fine and homogeneous which is likely the result of a re-grind process and a second phase of leaching. The gold recovery from the GIB bottle roll testing of this sample was 56.8%.

The tailings in pads 5, 6 and 7 (MLP02) are quite coarse which is likely the result of not having been re-ground. It is likely that these coarser tailings show better gold recoveries (78.3%) during the GIB bottle roll testing, because this material has only undergone one phase of leaching.

The spatially discrete nature of these leach pads easily facilitates the preferential removal of the higher gold recovery and/or higher-grade leach pads should a miner choose this option.

3.4 Edjudina Leach Pads Data

Various data for the Edjudina leach pads include:

- Average lengthweighted Au ranges from 0.77g/t to 2.10g/t
- Average pad thickness ranges from 0.32m to 2.22m
- Volumes range from 397m³ to 3,455m³
- All leach pads are within easy access of existing station tracks
- Leach pads 1 to 4 (M31/495, Figure 2) are within 250m of the Neta Project hard rock JORC Resource
- Leach pads 5 to 9 (M31/481, Figure 3) are within 800m of the Neta Project hard rock JORC Resource

3.5 Multi-element Assay Data

Head assay analyses by ALS Analytical (Nexus) and Nagrom Metallurgical (GIB) gives a good understanding of leach pad geochemistry.

Nexus's 'Master' sample is a composite of their Neta 1, Neta 2, Neta 3, Neta 4 and TRG 1 metallurgical samples. The GIB multi-element data is derived from assaying the three GIB metallurgical samples MLP01, MLP02 and MLP03.

Importantly for these re-treated tailings, mercury is low (2.3ppm). Arsenic is also relatively low (average 65ppm across four samples). Leach pad multi-element assay data is in Table 4.

Table 4: Ediudina Leach Pads – Multi-Element Assav

	•	Sample Number				mem Assay			Sample	Numbe	r
		Nexus		GIB				Nexus		GIB	
Element	Units	Master	MLP01	MLP02	MLP03	Element	Units	Master	MLP01	MLP02	
Au-1	g/t	1.66	1.70	0.87	0.99	Mn	ppm	800	840	1040	1
Au-2	g/t	1.53	1.53	0.95	1.14	Мо	ppm	<5	<1	<1	
Au (ave)	g/t	1.60	1.61	0.91	1.06	Na	ppm	7800	4740	5370	
Ag	ppm	1.2	1	<1	1	Nb	ppm	-	<5	<5	
Al	%	2.04	2.11	5.72	3.06	Nd	ppm	-	3	6	
As	ppm	70	60	60	70	Ni	ppm	40	30	140	1
Ва	ppm	115	140	190	160	Р	ppm	200	120	200	
Be	ppm	<5	<1	<1	<1	Pb	ppm	465	630	250	
Bi	ppm	20	28.5	5.0	27.0	Pr	ppm	-	0.5	1.5	1
C-total	%	0.48	0.5	1.8	0.8	Rb	ppm	-	23	34	
C-org	%	0.15	0.1	0.1	0.1	Re	ppm	-	<0.1	<0.1	
Ca	%	1.07	0.98	3.06	1.06	S-total	ppm	3200	2000	2000	
Cd	ppm	<5	9	3	2	S-sulph	ppm	800	700	1500	1
Ce	ppm	-	5	10	9	Sb	ppm	0.7	1	1	
Co	ppm	20	20	40	20	SiO ₂	%	75.8	-	-	
Cr	ppm	100	100	300	150	Sc	ppm	-	12	32	
Cs	ppm	-	<1	1	<1	Se	ppm	-	<1	<1	
Cu	ppm	374	310	220	260	Sm	ppm	-	0.5	1.5	,
Dy	ppm	-	1.0	2.0	1.0	Sn	ppm	-	<10	<10	1
Er	ppm	-	0.4	1.4	0.6	Sr	ppm	42	40	80	1
Eu	ppm	-	0.2	0.4	0.3	Та	ppm	-	<1	<1	
Fe	%	4.48	4.03	7.19	4.73	Tb	ppm	-	<0.1	0.2	
Ga	ppm	-	<100	<100	<100	Те	ppm	2	2.0	<0.5	'
Gd	ppm	-	1.0	2.0	1.0	Th	ppm	-	0.5	1.5	'
Ge	ppm	-	<1	<1	<1	Ti	ppm	1200	1020	2820	
Hf	ppm	-	<1	2	1	П	ppm	-	0.1	0.2	
Hg	ppm	2.3	-	-	-	Tm	ppm	-	<0.1	0.2	
Ho	ppm		0.2	0.5	0.3	U	ppm	-	<0.5	<0.5	'
In	ppm	-	<0.5	<0.5	<0.5	V	ppm	-	<100	200	
К	ppm	5200	5760	10120	6710	W	ppm	-	<10	<10	
La	ppm	-	3	5	5	Y	ppm	<100	3	7	
Li	ppm	<5	<10	20	<10	Yb	ppm	-	0.5	1.5	'
Lu	ppm	-	<0.2	<0.2	<0.2	Zn	ppm	244	300	100	1
Mg	ppm	6800	6100	16300	6700						

NB: cells marked with a dash denote element not analysed

Nexus assay schemes are:

- Gold in solids:
- Carbon speciation:
- Sulphur speciation:
- Arsenic:
- Antimony, mercury, and tellurium: •
- General elemental scan: •

Fire assay/ICP-OES

Labfit CS2000 analyser

Sherritt method/CS2000 analyser

D7 acid digest/ICP-OES

D1 low-temperature acid digest/ICP-MS

D3 or D4Z acid digest/ICP-OES or ICP-MS

GIB assay schemes are via Fire Assay, XRF, ICP-MS, ICP-OES, and Carbon Sulphur Analyser.

4.0 Bulk Density

In December 2024 GIB collected three composite metallurgical samples of augered material from the Neta and Senate leach pads. Due to a lab error these samples were not tested for bulk density. Resultingly, GIB has made the following observations and assumptions for this report for an estimate for bulk density of the leach pads:

- The leach pads were constructed in the 1980s and abandoned when operations concluded. Some pads were re-ground generating a finer grain size
- They are less than 20km from Edjudina station homestead which has recorded annual rainfalls of: 2019, 51.6mm; 2020, 182.8mm; 2021, 188.5mm; 2022, 154.1mm; and 2023, 137.4mm²
- Average annual evapo-transpiration at Edjudina is 2,400mm². GIB therefore deems the leach pads dry (minimal to no contained moisture). This has been confirmed by the GIB Auger work
- The leach pads have been weathering and settling since the 1980s, such that the resulting clays and quartz have lost some of their porosity. GIB deems the tailings compacted
- GIB estimates the average in-situ bulk density of the Edjudina leach pads as 1.6g/cm³. This figure is based on the bulk density of dry sand³ and should be confirmed with additional field check samples
- Upon completion of direct density measurements, parts of the Inferred Resource in this report could be considered for Indicated Resource status

5.0 Conclusion

The Company is pleased to be able to increase the overall resource at the Edjudina Gold Project by the addition of the historic leach pads JORC Inferred Resource of 24,800 tonnes Au @ 1.51g/t for 1,200 Oz Au.

These leach pads are situated above the natural ground surface and are easily accessible. They can be picked up with a front-end loader and placed directly onto a road train for transportation to a mill.

This ties into the Company's strategy of progressing permitting and JV discussions in order to permit for a Mine & Haul operation to be conducted at the Neta Gold Prospect, using toll treatment at a third-party mill (pending commercial contracts). This is the Company's current priority, further updates will follow

References:

¹Edjudina Gold Project Maiden JORC Resource – Neta Prospect; GIB ASX Release dated 14 November 2023

²Bureau of Meteorology, field station 12027 (Edjudina), operating since 1900

³Field Geologists' Manual (2011), p282

⁴ALS Metallurgical Testwork for Nexus Minerals Limited Dated September 2020

⁵Nagrom Metallurgical Report T3529, Cyanide Bottle Roll Dated 15 January 2025

Competent Persons Statements

The information in the report to which this statement is attached that relates to Mineral Resources based upon information compiled by Mr Jim Richards, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Mr. Richards is a Director of Gibb River Diamonds Limited. Mr Richards has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Richards consents to the inclusion in the report of matters based on his information in the form and context in which it appears.

The information in this report that relates to exploration results, Mineral Resources or Ore Reserves is based on information compiled by Mr Jim Richards who is a Member of The Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Mr. Richards is a Director of Gibb River Diamonds Limited. Mr. Richards has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Richards consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

FORWARD LOOKING AND CAUTIONARY STATEMENTS.

Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future earnings, cash flow, costs and financial performance. Forward looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "predict", "foresee", "proposed", "aim", "target", "opportunity", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this report are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements may be affected by a range of variables that could cause actual results to differ from estimated results and may cause the Company's actual performance and financial results in future periods to materially differ from any projections of future performance or results expressed or implied by such forward-looking statements.

Appendices

Appendix A:	Auger Drilling Collar File
-------------	----------------------------

Appendix B: Auger Drilling lengthweighted Au assays

Appendix C: JORC Table 1

Appendix A: Auger Drilling Collars

Appendix A		GA zone 5		Total			
Hole ID	mE	mN	mRL	Depth (m)	Dip (°)	Azi	
NMTRAU 001	457062	6697606	359.4	0.2	-90	0	
NMTRAU 002	457067	6697600	359.5	0.2	-90	0	
NMTRAU 003	457074	6697589	359.7	0.5	-90	0	
NMTRAU 004	457084	6697587	359.8	0.2	-90	0	
NMTRAU 005	457088	6697583	359.8	0.5	-90	0	
NMTRAU 006	457097	6697567	360.0	0.1	-90	0	
NMTRAU 007	457103	6697560	360.0	0.2	-90	0	
NMTRAU 008	457116	6697569	360.0	0.4	-90	0	
NMTRAU 009	457109	6697577	360.0	0.2	-90	0	
NMTRAU 010	457100	6697580	359.9	0.5	-90	0	
NMTRAU 011	457092	6697587	359.8	0.5	-90	0	
NMTRAU 012	457082	6697590	359.8	0.5	-90	0	
NMTRAU 013	457078	6697595	359.8	0.5	-90	0	
NMTRAU 014	457071	6697601	359.6	0.2	-90	0	
NMTRAU 015	457076	6697615	359.5	0.5	-90	0	
NMTRAU 016	457088	6697610	359.6	0.2	-90	0	
NMTRAU 017	457093	6697604	359.8	0.5	-90	0	
NMTRAU 018	457100	6697586	359.9	0.3	-90	0	
NMTRAU 019	457103	6697583	359.9	0.2	-90	0	
NMTRAU 020	457108	6697579	360.0	0.4	-90	0	
NMTRAU 021	457116	6697579	360.0	0.4	-90	0	
NMTRAU 022	457119	6697572	360.0	0.5	-90	0	
NMTRAU 023	457122	6697571	360.0	0.2	-90	0	
NMTRAU 024	457127	6697573	360.0	0.2	-90	0	
NMTRAU 025	457120	6697582	360.0	0.2	-90	0	
NMTRAU 026	457114	6697586	360.0	0.1	-90	0	
NMTRAU 027	457102	6697599	359.8	0.2	-90	0	
NMTRAU 028	457100	6697608	359.8	0.2	-90	0	
NMTRAU 029	457090	6697610	359.6	0.5	-90	0	
NMTRAU 030	457046	6697590	359.4	0.4	-90	0	
NMTRAU 031	457051	6697590	359.4	0.2	-90	0	
NMTRAU 032	457037	6697579	359.3	1.2	-90	0	
NMTRAU 033	457037	6697586	359.3	1.4	-90	0	
NMTRAU 034	457040	6697593	359.3	1.2	-90	0	
NMTRAU 035	457062	6697575	359.5	0.6	-90	0	
NMTRAU 036	457069	6697569	359.6	0.8	-90	0	
NMTRAU 037	456073	6699524	364.5	2.0	-90	0	
NMTRAU 038	456081	6699529	364.3	2.0	-90	0	
NMTRAU 039	456089	6699531	364.3	3.0	-90	0	
NMTRAU 040	456098	6699532	364.3	3.0	-90	0	
NMTRAU 041	456106	6699531	364.3	2.0	-90	0	
NMTRAU 042	456105	6699539	364.3	2.5	-90	0	
NMTRAU 043	456097	6699538	364.3	2.7	-90	0	
NMTRAU 044	456087	6699534	364.3	2.0	-90	0	

	MCA Jona 51						
Hole ID	-	GA zone 5'		Total	Dip (°)	Azi	
	mE	mN	mRL	Depth (m)			
NMTRAU_045	456080	6699531	364.3	1.5	-90	0	
NMTRAU_046	456070	6699531	364.5	1.5	-90	0	
NMTRAU_047	449526	6707331	378.0	1.5	-90	0	
NMTRAU_048	449536	6707335	378.0	1.5	-90	0	
NMTRAU_049	449542	6707341	378.0	1.5	-90	0	
NMTRAU_050	449553	6707346	378.0	1.5	-90	0	
NMTRAU_051	449561	6707333	378.0	2.0	-90	0	
NMTRAU_052	449552	6707327	378.0	2.0	-90	0	
NMTRAU_053	449541	6707323	377.9	1.5	-90	0	
NMTRAU_054	449533	6707318	377.8	1.5	-90	0	
NMTRAU_055	449536	6707311	377.8	1.5	-90	0	
NMTRAU_056	449546	6707316	377.9	1.5	-90	0	
NMTRAU_057	449555	6707319	377.9	1.6	-90	0	
NMTRAU_058	449564	6707326	378.0	1.7	-90	0	
NMTRAU_059	449571	6707314	378.0	2.0	-90	0	
NMTRAU_060	449563	6707311	377.9	1.9	-90	0	
NMTRAU_061	449552	6707304	377.8	1.8	-90	0	
NMTRAU_062	449544	6707297	377.8	1.6	-90	0	
NMTRAU_063	449623	6707242	374.5	1.8	-90	0	
NMTRAU_064	449613	6707237	374.5	1.5	-90	0	
NMTRAU_065	449606	6707231	374.5	1.5	-90	0	
NMTRAU_066	449596	6707227	374.5	1.0	-90	0	
NMTRAU_067	449590	6707236	374.5	1.0	-90	0	
NMTRAU_068	449596	6707241	374.5	1.0	-90	0	
NMTRAU_069	449606	6707244	374.5	1.5	-90	0	
NMTRAU_070	449615	6707251	374.5	2.0	-90	0	
NMTRAU_071	449612	6707260	374.5	2.0	-90	0	
NMTRAU_072	449604	6707257	374.5	1.5	-90	0	
NMTRAU_073	449595	6707252	374.5	1.4	-90	0	
NMTRAU_074	449585	6707242	374.5	1.3	-90	0	
NMTRAU_075	449578	6707253	374.5	1.3	-90	0	
NMTRAU_076	449590	6707259	374.5	1.3	-90	0	
NMTRAU_077	449599	6707264	374.5	1.4	-90	0	
NMTRAU_078	449607	6707266	374.5	1.6	-90	0	
NMTRAU_079	449602	6707270	374.5	1.4	-90	0	
NMTRAU_080	449596	6707266	374.5	1.3	-90	0	
NMTRAU_081	449587	6707261	374.5	1.2	-90	0	
NMTRAU_082	449577	6707256	374.5	1.3	-90	0	
NMTRAU_083	449636	6707249	373.7	1.1	-90	0	
NMTRAU_084	449646	6707256	373.7	1.3	-90	0	
NMTRAU_085	449654	6707262	373.6	1.4	-90	0	
NMTRAU_086	449662	6707263	373.5	1.4	-90	0	
NMTRAU_087	449659	6707272	373.5	1.4	-90	0	
NMTRAU_088	449649	6707265	373.6	1.3	-90	0	
NMTRAU_089	449642	6707259	373.8	1.2	-90	0	
NMTRAU_090	449632	6707254	373.9	1.3	-90	0	
NMTRAU_091	449624	6707266	373.9	1.0	-90	0	
NMTRAU_092	449629	6707269	373.8	1.0	-90	0	
NMTRAU_093	449645	6707279	373.7	1.3	-90	0	
NMTRAU_094	449654	6707280	373.6	1.3	-90	0	
NMTRAU_095	449649	6707289	373.6	1.3	-90	0	
NMTRAU_096	449642	6707280	373.7	1.3	-90	0	
NMTRAU_097	449632	6707274	373.8	1.1	-90	0	
NMTRAU_098	449620	6707265	373.9	1.0	-90	0	
NMTRAU_099	449617	6707278	373.8	1.0	-90	0	
NMTRAU_100	449626	6707284	373.8	1.0	-90	0	
NMTRAU_101	449634	6707289	373.7	1.2	-90	0	

	M	GA zone 5'	1	Total		
Hole ID	mE	mN	mRL	Depth (m)	Dip (°)	Azi
NMTRAU 102	449645	6707296	373.6	1.2	-90	0
NMTRAU 103	449670	6707272	373.5	1.2	-90	0
NMTRAU 104	449675	6707274	373.2	1.3	-90	0
NMTRAU 105	449684	6707278	373.0	1.2	-90	0
NMTRAU 106	449693	6707286	373.1	1.2	-90	0
NMTRAU 107	449701	6707289	373.0	1.3	-90	0
NMTRAU 108	449711	6707293	373.0	1.4	-90	0
NMTRAU 109	449717	6707298	373.0	1.4	-90	0
NMTRAU 110	449712	6707304	373.0	1.5	-90	0
NMTRAU 111	449706	6707300	373.0	1.4	-90	0
NMTRAU 112	449696	6707294	373.1	1.3	-90	0
NMTRAU 113	449689	6707290	373.1	1.2	-90	0
NMTRAU 114	449681	6707286	373.1	1.2	-90	0
NMTRAU 115	449671	6707280	373.2	1.2	-90	0
NMTRAU 116	449666	6707278	373.5	1.2	-90	0
NMTRAU 117	449660	6707289	373.5	1.2	-90	0
NMTRAU 118	449665	6707293	373.3	1.2	-90	0
NMTRAU 119	449676	6707300	373.2	1.2	-90	0
NMTRAU 120	449684	6707303	373.2	1.3	-90	0
NMTRAU 121	449695	6707308	373.0	1.3	-90	0
NMTRAU 122	449704	6707313	373.0	1.4	-90	0
NMTRAU 123	449714	6707316	373.0	1.4	-90	0
NMTRAU 124	449706	6707321	373.0	1.2	-90	0
NMTRAU 125	449696	6707315	373.0	1.4	-90	0
NMTRAU 126	449692	6707313	373.0	1.3	-90	0
NMTRAU 127	449682	6707307	373.2	1.4	-90	0
NMTRAU 128	449671	6707302	373.2	1.2	-90	0
NMTRAU 129	449664	6707295	373.3	1.1	-90	0
NMTRAU 130	449657	6707293	373.3	1.2	-90	0
NMTRAU 131	449656	6707306	373.3	1.1	-90	0
NMTRAU 132	449665	6707309	373.3	1.0	-90	0
NMTRAU 133	449670	6707312	373.3	1.0	-90	0
NMTRAU 134	449679	6707320	373.1	1.2	-90	0
NMTRAU 135	449689	6707322	373.0	1.2	-90	0
NMTRAU 136	449698	6707326	373.0	1.3	-90	0
NMTRAU 137	449704	6707331	373.0	1.0	-90	0
SA01	450074	6706754	370.8	1.2	-90	0
SA02	450075	6706745	370.8	1.3	-90	0
SA03	450094	6706748	370.9	1	-90	0
SA04	450097	6706733	371.0	0.8	-90	0
SA05	450081	6706731	370.9	0.8	-90	0
SA06	450101	6706715	371.3	1.5	-90	0
SA07	450086	6706712	371.3	1.4	-90	0
SA08	450019	6706776	372.3	1.4	-90	0
SA09	449996	6706768	372.3	0.3	-90	0
SA10	449992	6706777	372.3	1.6	-90	0
SA11	450015	6706786	372.3	1.6	-90	0

NB: NMTRAU prefix is Nexus SA prefix is GIB

Hole ID	Leach pad number	Depth of Tailings (m)	Au lengthweighted (ppm)
		. . ,	
NMTRAU_047	1	1.5	1.61
NMTRAU_048 NMTRAU_049	1	1.5 1.5	1.37
NMTRAU_049	1	1.5	0.98
NMTRAU 051	1	2.0	0.75
NMTRAU 052	1	2.0	0.73
NMTRAU 053	1	1.5	1.77
NMTRAU 054	1	1.5	1.44
NMTRAU 055	1	1.5	1.71
NMTRAU 056	1	1.5	1.13
NMTRAU 057	1	1.6	0.96
NMTRAU 058	1	1.7	0.74
NMTRAU 059	1	2.0	0.74
NMTRAU 060	1	1.9	0.79
NMTRAU_061	1	1.8	1.26
NMTRAU_062	1	1.6	1.32
Lengthweighted			
average Leach Pad 1	1	1.66	1.11
NMTRAU_063	2	1.8	1.82
NMTRAU_064	2	1.5	1.57
NMTRAU_065	2	1.5	1.97
NMTRAU_066	2	1.0	1.26
NMTRAU_067	2	1.0	1.90
NMTRAU_068	2	1.0	1.19
NMTRAU_070	2	2.0	1.61
NMTRAU_072	2	1.5	1.68
NMTRAU_074	2	1.3	1.75
NMTRAU_076	2	1.3	1.65
NMTRAU_078	2	1.6	2.00
NMTRAU_080	2	1.3	1.82
NMTRAU_082	2	1.3	1.44
Lengthweighted average Leach Pad 2	2	1.39	1.69
NMTRAU 084	3	1.39	1.43
NMTRAU_086		1.3	1.43
NMTRAU 088	3	1.4	1.43
NMTRAU 090	3	1.3	1.34
NMTRAU 091	3	1.0	1.39
NMTRAU 092	3	1.0	1.76
NMTRAU 093	3	1.3	1.51
NMTRAU 094	3	1.3	1.71
NMTRAU 095	3	1.3	1.60
NMTRAU 096	3	1.3	1.47
NMTRAU_097	3	1.1	1.39
NMTRAU_098	3	1.0	1.41
NMTRAU_099	3	1.0	1.09
NMTRAU_100	3	1.0	1.26
NMTRAU_101	3	1.2	1.89
NMTRAU_102	3	1.2	1.73
NMTRAU_103	3	1.2	1.31
Lengthweighted			
average Leach Pad 3	3	1.19	1.48
NMTRAU_104	4	1.3	1.49
NMTRAU_105	4	1.2	1.62

Appendix B: Auger Drilling Lengthweighted Au Assays

Hole ID	Leach pad number	Depth of Tailings (m)	Au lengthweighted (ppm)
NMTRAU_106	4	1.2	1.97
NMTRAU_107	4	1.3	1.60
NMTRAU_108	4	1.4	1.84
NMTRAU_109	4	1.4	1.65
NMTRAU 110	4	1.5	1.52
NMTRAU 111	4	1.4	1.32
NMTRAU 112	4	1.3	1.85
NMTRAU 113	4	1.2	1.50
NMTRAU 114	4	1.2	2.10
NMTRAU_115	4	1.2	1.65
NMTRAU_116	4	1.2	1.49
NMTRAU_117	4	1.2	1.56
NMTRAU_118	4	1.2	1.59
NMTRAU_119	4	1.2	1.63
NMTRAU_120	4	1.3	1.70
NMTRAU_121	4	1.3	2.17
NMTRAU_122	4	1.4	1.41
NMTRAU_123	4	1.4	1.99
NMTRAU_124	4	1.2	1.40
NMTRAU_125	4	1.4	2.13
NMTRAU_126	4	1.3	1.56
NMTRAU_127	4	1.4	1.45
NMTRAU_128	4	1.2	1.96
NMTRAU_129	4	1.1	1.96
NMTRAU_130	4	1.2	1.58
NMTRAU_131	4	1.1	1.88
NMTRAU_132	4	1.0	1.54
NMTRAU_133	4	1.2	2.12
NMTRAU_134	4	1.2	1.68
NMTRAU_135	4	1.2	1.57
NMTRAU_136	4	1.3	1.36
NMTRAU_137	4	1.2	4.21
Lengthweighted			
average Leach Pad 4	4	1.26	1.76
SA01	5	1.3	2.19
SA02	5	1.3	0.61
SA03	5	1	0.59
Lengthweighted	_		
average Leach Pad 5	5	1.20	1.18
SA04	6	0.8	1.52
SA05	6	0.8	1.98
Lengthweighted			
average Leach Pad 6	6	0.80	1.75
SA06	7	1.5	0.78
SA07	7	1.4	1.71
Lengthweighted	_		4.66
average Leach Pad 7	7	1.45	1.23
SA08	8	1.6	0.80
SA09	8	(1.6)	0.74
Lengthweighted	_	4 00	A 77
average Leach Pad 8	8	1.60	0.77
SA10	9	1.6	1.22
SA11	9	1.6	1.91
Lengthweighted	_	4 00	4
average Leach Pad 9	9	1.60	1.57
NMTRAU_037	10	2	1.86
NMTRAU 038	10	2	2.21

Hole ID	Leach pad number	Depth of Tailings (m)	Au lengthweighted (ppm)
NMTRAU_039	10	3	1.88
NMTRAU 040	10	3	2.14
NMTRAU 041	10	2	1.92
NMTRAU 042	10	2.5	1.78
NMTRAU 043	10	2.7	2.98
NMTRAU 044	10	2	2.19
NMTRAU_045	10	1.5	1.6
NMTRAU 046	10	1.5	1.71
Lengthweighted			
average Leach Pad 10	10	2.22	2.07
NMTRAU 001	11	0.2	0.43
NMTRAU_002	11	0.2	0.96
NMTRAU_003	11	0.5	1.13
NMTRAU 004	11	0.2	2.26
NMTRAU_005	11	0.5	1.44
NMTRAU 006	11	0.1	1.2
NMTRAU 007	11	0.2	1.62
NMTRAU 008	11	0.4	1.09
NMTRAU 009	11	0.2	1.8
NMTRAU 010	11	0.5	1.49
NMTRAU_011	11	0.5	1.31
NMTRAU_012	11	0.5	3.05
NMTRAU_013	11	0.5	1.23
NMTRAU_014	11	0.2	1.07
NMTRAU_015	11	0.5	0.81
NMTRAU_016	11	0.2	1.43
NMTRAU_017	11	0.5	1.51
NMTRAU_018	11	0.3	1.49
NMTRAU_019	11	0.2	1.15
NMTRAU_020	11	0.4	1.45
NMTRAU_021	11	0.4	2.38
NMTRAU_022	11	0.5	1.33
NMTRAU_023	11	0.2	1.13
NMTRAU_024	11	0.2	0.71
NMTRAU_025	11	0.2	1.35
NMTRAU_026	11	0.1	0.82
NMTRAU_027	11	0.2	1.07
NMTRAU_028	11	0.2	1.59
NMTRAU_029	11	0.5	1.14
Lengthweighted			
average Leach Pad 11	11	0.32	1.41

NB: NMTRAU prefix is Nexus SA prefix is GIB

Appendix C JORC Table 1

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Nexus: mechanised hand auger drilling was used to generate 0 – 1m and 1.01m – EOH samples, which were pulverised to produce a 50g fire assay sample at Intertek Perth. GIB: Hand-held auger drilling was used to generate 0 – 1m and 1.01m – EOH samples, which were pulverised to produce a 50g fire assay sample at Intertek Perth. Composite metallurgical samples were collected by GIB using a hand-held auger with a heavy sand bit. Nexus metallurgical samples are composite samples collected during their mechanised hand auger campaign. Sampling was undertaken using an aluminum scoop to collect a representative section through the drill cutting cone around the drill hole. Approximately 2kg of sample was collected per auger hole. Each Neta drill pad was composited and submitted as an individual metallurgical sample whereas the Belgrave and Glengarry leach pads were composited and submitted as a single metallurgical sample.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Nexus: leach pads were sampled using a mechanised hand auger. Sample intervals were 0 to 1m (where leach pad depth is >1m) and 1.01m to EOH. Sampling was undertaken using an aluminium scoop to collect a representative section through the drill cutting cone around the drill hole. GIB: leach pads were sampled via hand-held auger drilling with a heavy sand bit to generate 0 – 1m and 1.01m – EOH samples (all holes were <2m depth).
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 A geologist was present for all Nexus and GIB drillholes to ensure no contamination with underlying material and representative sampling techniques were followed. Recovery was 100% from these shallow auger holes. No sample bias is expected.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Leach pad material is ore which has already been crushed, first during the original mining in the 1890s – 1930s, and in many cases crushed again before being stacked into leach pads. This leads to a strong degree of homogenisation of the leach pad material. During auger drilling the leach pad material was observed as homogeneous. Further detailed geological logging was deemed unnecessary.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Nexus assay samples: sampling was undertaken using an aluminium scoop to collect a representative section through the drill cutting cone around the drill hole. GIB assay samples: the whole hole was sampled. Sample sizes are appropriate for these leach pad samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assay samples and metallurgical samples: lab-inserted duplicates, standards and blanks. Assay samples: both companies pulverised the samples to produce a 50g fire assay Au sample at Intertek Perth. This technique is considered total. GIB metallurgical samples were pulverised to 75µm at Nagrom Metallurgical for bottle roll analysis, which included: head grade assay, 500g sample, initial cyanide 500ppm, Au extraction at 8hr, 24hr and 48hr. Gravity gold recovery was not undertaken. Nexus metallurgical samples were pulverised to 125µm by ALS Metallurgy Services in Perth and sample head grade was analysed. Grind establishment testwork was followed by cyanide leach testwork with initial parameters 500ppm cyanide at pH 10.5 pH. Leach monitored at 4, 8, 24, 48 hours.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No adjustments to assay data. Data is stored on the GIB server. Nexus data from Nexus and pers comm with Nexus personnel.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations recorded by hand-held GPS and verified via georeferenced orthophoto. Datum is MGA zone 51. Topographic control is 10cm LiDAR flown in 2012.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Individual leach pads were sampled by a minimum of 2 and a maximum of 32 drillholes. This is sufficient to establish an Inferred resource.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Vertical auger drilling in 1980s cyanide leach pads. Sampling is unbiased. No structures are present.
Sample security	The measures taken to ensure sample security.	Nexus: not recorded.GIB: samples collected and delivered to laboratories by GIB staff.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• n/a

Criteria	oorting of Exploration Results JORC Code explanation	Commentary
Griteria		Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Samples were collected from M31/481, M31/495 and E31/1179, all of which are held 100% by GIB with no encumbrances. M31/481, M31/495 and E31/1179 are granted tenure.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• In October 2019 Nexus Minerals Limited undertook a 137-hole auger sampling program targeting seven historic tailings leach pads at the Neta, Belgrave and Glengarry prospects at what is now GIB's Edjudina Gold Project. This work is discussed along with GIB's work in this Table 1.
Geology	• Deposit type, geological setting and style of mineralisation.	 1980s leach pads formed from tailings from the Neta, Senate, Belgrave and Glengarry mines on the Edjudina line of workings.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• See Appendix 1 to the report accompanying this Table 1.
Data aggregatio n methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 Assay samples were lengthweighted where drillhole depth is >1.01m and lengthweighted data is presented in Appendix 2. Only gold is reported. The sampled material is tailings which has been further moved and re-treated at least once. Resultingly they are considered relatively homogeneous which is the reason for not using top and bottom cuts.

Criteria	JORC Code explanation	Commentary
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationshi p between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The horizontal leach pads were tested by vertical auger drillholes. All reported drillhole depths are to the base of the leach pad.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See body of this report for figures.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drillhole results used in this resource are reported (see Appendices 1 and 2 to this report).
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 As discussed in the body of this report, bulk density testing was not undertaken due to a lab error. Bulk density is assumed. No other substantive exploration data is known.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Bulk density testing is planned.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data was entered from laboratory reports directly into Micromine for lengthweighting calculation. Micromine undertakes validation analysis on drillhole databases.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 GIB geologists collected the gold and metallurgical samples detailed in this report. Nexus geologists also collected the Nexus samples detailed in this report. Mr. Richards has conducted numerous site visits to the Edjudina leach pads.
Geological interpretati on	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The sampled material is tailings which has been further moved and re-treated at least once. Resultingly they are considered largely homogeneous.
Dimensions		 Length and width of individual leach pads taken from high-detail georeferenced orthophotography. Depths taken from depth to base of leach pad as determined by auger drilling.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). 	 Resource estimation derived by: Compile lengthweighted assays for all auger holes; Separate auger holes into individual leach pad cells; Calculate the area of each leach pad cell using 10cm-detail LIDAR and aerial photography flown in 2012; Calculate the average depth of tailings and lengthweighted average Au (g/t) from the auger data for each leach pad; Calculate the total volume of each leach pad [area (m²) x average depth of tailings]; Calculate the gold endowment in each leach pad [volume x bulk density x average lengthweighted Au assay]; and Apply metallurgical recoveries from bottle roll testwork to calculate recoverable gold.

Criteria	JORC Code explanation	Commentary
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	processed leach pad material.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 Leach pads are deemed dry (see Section 4.0 Bulk Density in the report accompanying this Table 1, and the discussion about bulk densities below).
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 No cut-off parameters used for this relatively homogeneous re- processed leach pad material.
Mining factors or assumption s	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Leach pads will be picked up by a loader and trucked to a third-party mill for grinding (as necessary) and CIL/CIP gold recovery.
Metallurgic al factors or assumption s	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Cyanide bottle roll testwork undertaken by Nagrom Metallurgical (GIB data) and ALS Metallurgical (Nagrom data) was used to calculate gold recoveries and is discussed in the body of this report.
Environme ntal factors	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to 	 Comprehensive head grade assaying by Nagrom Metallurgical and ALS Metallurgical indicates there are no harmful levels of deleterious elements in the leach pads.

Criteria	JORC Code explanation	Commentary
or assumption s	consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Mercury is low (2.3ppm). Arsenic is also low (average 65ppm across four samples) which reflects the low levels of arsenopyrite in Edjudina mineralisation. Sulphide (av. 825ppm), lead (av. 404ppm), and cadmium (av. 3.5ppm) are all within acceptable levels.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Due to a lab error the metallurgical samples were not tested for bulk density. Bulk density is assumed. GIB has made the following observations and assumptions for the assumed bulk density: The leach pads were constructed in the 1980s and abandoned when operations concluded. Some pads have been re-ground providing a finer grain size. The resource is less than 20km from Edjudina station homestead which has recorded annual rainfalls of: 2019, 51.6mm; 2020, 182.8mm; 2021, 188.5mm; 2022, 154.1mm; and 2023, 137.4mm. Average annual evapo-transpiration at Edjudina is 2,400mm. GIB therefore deems the leach pads dry (minimal to no contained moisture). The leach pads are on an active cattle station and have been weathering and settling since the 1980s, such that the resulting clays and quartz have lost some of their porosity. GIB deems the tailings compacted. GIB estimates the average in-situ bulk density of the Edjudina leach pads as 1.6g/cm³. This figure is a conservative estimate based on the bulk density of dry sand and should be confirmed with additional field check sampleS.
Classificati on	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Due to the assumed bulk density, this Mineral Resource is classified as Inferred. This takes appropriate account of all relevant factors. This result reflects Mr. Richards' view of the deposit

Criteria	JORC Code explanation	Commentary
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	This Inferred Resource has been peer reviewed by a GIB geologist.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 There is good confidence in the metallurgy, mineralisation, hole locations, drilling methods, and assay data. Leach pads are discrete and individually sampled. Hence there is good relative accuracy and confidence in this MRE. This MRE relates to global estimates of tonnes and grade. GIB has not undertaken any mining at these leach pads and there is no production data. Reconciliation is not possible.