

ASX RELEASE: 12 FEBRUARY 2026

Binding Option to Acquire 90% of Advanced Pomme REE Project in Quebec, Partnering with Metallium

- Binding option and staged earn-in agreement executed to acquire 90% of the Pomme Project which is a large carbonatite-hosted REE-Nb Rare Earth Element (REE) Project in Québec
- Strategic alignment and acquisition from Metallium Limited (ASX: MTM) deepens the Harts Range vertical integration¹, adds a complementary Canadian asset, to create a western world jurisdictional partnership
- Metallium to assist as processing and technology partner, supporting metallurgical test work and downstream development
- Initial activities will target conventional metallurgical studies work and Flash Joule Heating (FJH) test work on existing drill samples to assess the potential for upgrading REE mineralisation
- Limited wide spaced scout drilling undertaken to date with high grade known mineralisation and large areas remaining untested from reconnaissance drilling
- Pomme REE Carbonatite key historical intercepts^{2,8} include:

Drillhole POM-23-03: 398m @ 0.54% TREO & 0.05% Nb₂O₅ from 16m, including:

30.5m @ 1.13% TREO & 0.03% Nb₂O₅ (from 311.5m) including
26.5m @ 1.45% TREO & 0.02% Nb₂O₅
51m @ 0.92% TREO & 0.06% Nb₂O₅ (from 216m) including
9m @ 1.21% TREO & 0.03% Nb₂O₅ and
8.5m @ 1.62% TREO & 0.03% Nb₂O₅
36m @ 0.92% TREO & 0.06% Nb₂O₅ (from 174m) including
18m @ 1.16% TREO & 0.03% Nb₂O₅

Drillhole POM-23-01: 513m @ 0.33% TREO & 0.08% Nb₂O₅ from 32m, including:

17.5m @ 0.68% TREO & 0.08% Nb₂O₅ (from 228.6m) including
7.6m @ 0.9% TREO & 0.02% Nb₂O₅, and
94.8m @ 0.55% TREO & 0.05% Nb₂O₅ (from 333.5m) including
4.5m @ 1% TREO & 0.02% Nb₂O₅, and
4.9m @ 1.1% TREO & 0.02% Nb₂O₅, and
4.25m @ 1.28% TREO & 0.02% Nb₂O₅, and
17m @ 0.72% TREO & 0.06% Nb₂O₅

- The project comprises easily accessible claims via logging roads, with access to hydro-electric power, relatively flat topography, and is supported by extensive mining infrastructure and services²
- Low cost upfront consideration A\$100,000 cash and A\$200,000 in shares with contingent payments to earn a majority project interest through staged investment and technical milestones
- Government support and existing arrangements with local Cree First Nations of Waswanipi (CFNW) community²
- NFM (OTCQB:NFMXF) has engaged New York-based Viriathus Investor Advisory to expand its profile and actively promote the Company to US investors and capital markets

New Frontier Minerals Limited (ASX: NFM) (“NFM” or “the Company”) is pleased to announce it has entered into a binding option and earn-in agreement providing NFM with the right to acquire a majority (90%) interest in the Pomme REE Project from Australian-listed company Metallium (ASX: MTM), which is located approximately 500 km northwest of Montréal in Québec around 100 km from the service town of Lebel-sur-Quévillon. The Pomme Project, consists of 43 mineral claims, covering 2,400 ha. NFM holds the exclusive and binding option to acquire 90% of the Pomme REE-Nb project.

Chairman Gerrard Hall commented: *“This transaction materially advances NFM’s critical minerals strategy. Pomme is a large, carbonatite-hosted REE system in a proven Québec district, with historical drilling having already confirmed scale and continuity. The earn-in structure provides a capital-efficient pathway for growth, while early integration of Metallium as processing and technology partner further enhances the opportunity. The Board believes Pomme’s scale, location and upside strongly position NFM to deliver meaningful shareholder value.”*

John Hannaford, Chairman of Metallium, said: *“We are delighted to partner with NFM in advancing and unlocking the full potential of the Pomme rare earths project. New Frontier brings strong exploration capability and a disciplined, value-driven approach to discovery, which we believe can materially enhance the scale and quality of the mineralised system. When combined with Metallium’s proprietary processing technologies and a comprehensive metallurgical test-work program, this partnership has the potential to support value uplift across both the resource and downstream development pathways.”*

POMME CARBONATITE REE PROJECT

The Project is located approximately 500 km northwest of Montréal in Québec, around 100 km from the service town of Lebel-sur-Quévillon, approximately 50 km west of the Waswanipi Cree First Nation community, and benefits from easy access via established logging roads (Figure 1)². The Project comprises 43 mineral claims, covering approximately 2,400 ha area and is located 7km from the world class Montviel Deposit which has a total Indicated and Inferred resource of 266 Mt @ 1.46% TREO and 0.14% Nb₂O₅.

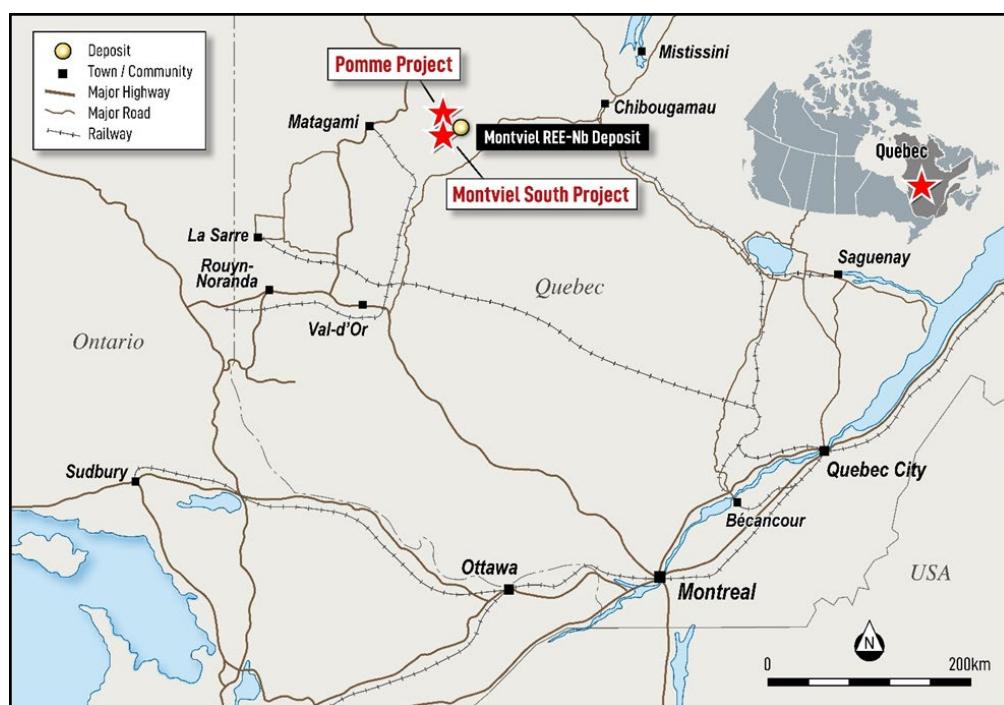


Figure 1: Regional location map showing Pomme Project, in Québec, Canada²

MTM Critical Metals (a 100% subsidiary of ASX:MTM) has completed a 13-hole diamond drilling program totalling approximately 5,718 metres at its Pomme Rare Earth Element and Niobium Project in Québec, Canada². Carbonatite-hosted REE-Nb mineralisation was intersected in every drill hole, confirming the presence of a large, laterally extensive mineralised system exceeding 2 km² that remains open at depth (Figure 2).

The historic work program has significantly advanced the geological understanding of the complex, with early interpretations indicating that higher-grade mineralisation occurs within a ring structure surrounding a magnetic ultramafic carbonatite core.

Drill holes POM-23-03, POM 23-01 and POM 23-07 to the southwest of the mineralised carbonatite returned broad mineralised intervals with multiple high-grade TREO intersections, supporting strong geological similarities to the nearby world-class Montviel carbonatite deposit.

Importantly, large portions of this prospective ring structure remain untested due to the broad drill spacing, presenting clear potential for further discovery through follow-up drilling.

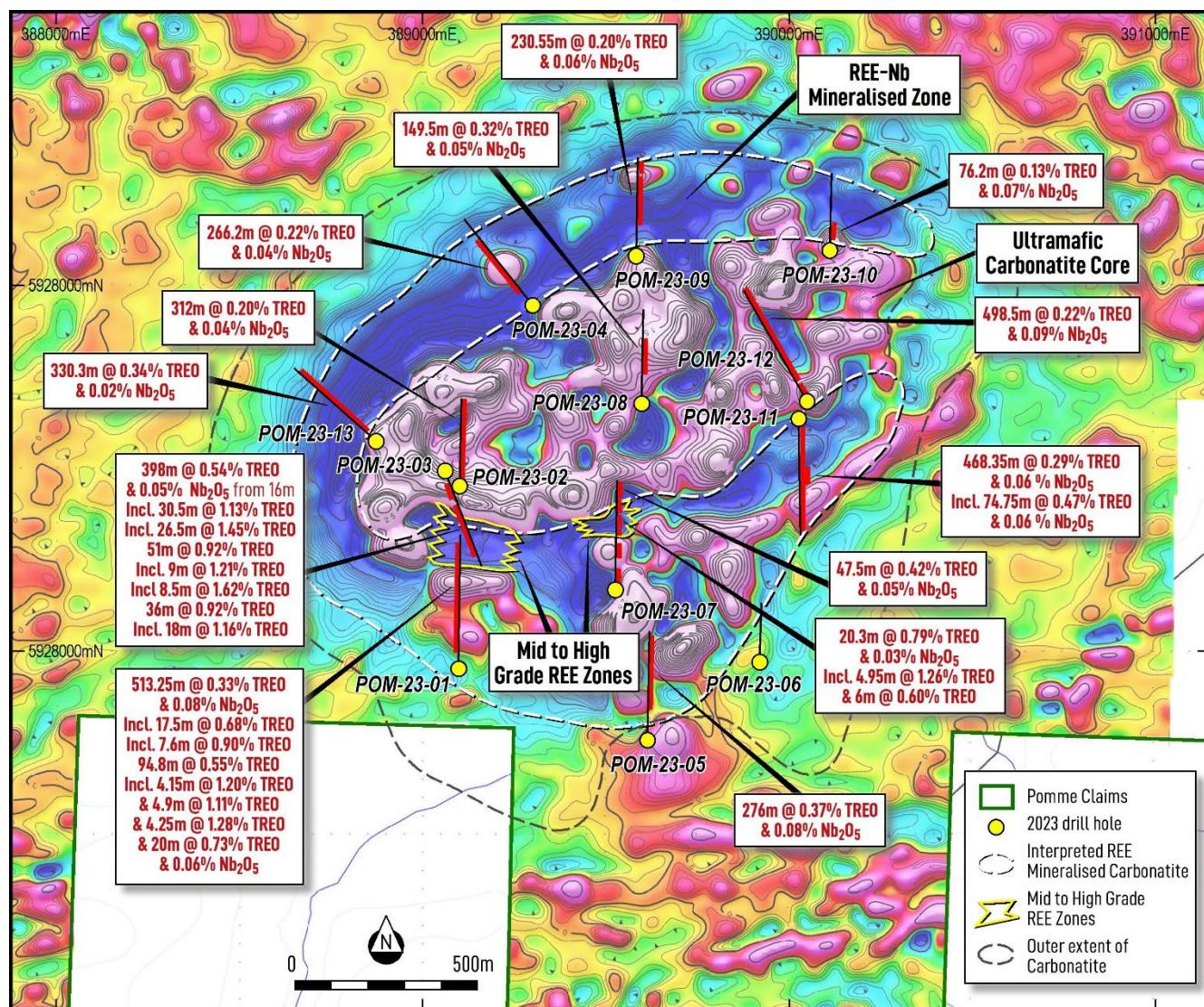


Figure 2: MTM scout drilling at the Pomme Project area overlain on airborne magnetic image (TMI, 1VD)

STRATEGY AND DEVELOPMENT OPPORTUNITY

The Pomme Project provides NFM with a highly capital-efficient, low-risk entry into a strategically located Canadian rare earth asset via a two-year option structure requiring upfront consideration of A\$100,000 in cash and A\$200,000 in NFM shares and minimum annual expenditure of A\$100,000 per annum during the option period. This staged earn-in framework enables NFM to progressively earn a majority (90%) interest through defined technical and investment milestones, significantly limiting upfront capital exposure while preserving substantial upside.

1. Initial work programs will focus on conventional metallurgical test work alongside the application of Metallium's proprietary Flash Joule Heating (FJH) technology to existing drill core, targeting the production of upgraded rare earth concentrates and early validation of a scalable, low-cost processing pathway that has the potential to materially enhance project economics.
2. The Pomme Project presents compelling exploration upside, having been subject to only limited, widely spaced drilling to date, with drill lines approximately 500 metres apart². Despite this early-stage drill density, high-grade rare earth element intersections have already been identified within a large, laterally extensive carbonatite system, highlighting the potential for significant growth through follow-up drilling targeting near surface higher grade zones of rare earth mineralisation.

The existing results indicate that higher-grade zones of mineralisation remain open, providing New Frontier Minerals with a strong opportunity to materially expand the scale and grade of mineralisation through systematic infill and step-out drilling programs.

METALLIUM TECHNOLOGY PARTNERSHIP

The acquisition deepens the Harts Range vertical integration with MTM¹, adds a highly complementary Canadian asset, and creates a compelling Western-world partnership with MTM across Australia and Canada, delivering value for shareholders.

NFM's binding commercial framework with Metallium also establishes a strategic technology partnership that is directly applicable to the advancement of the Pomme REE–Nb Project in Québec. Under this framework, MTM's proprietary Flash Joule Heating (FJH) technology has demonstrated encouraging sighter beneficiation results on raw rare earth ore, producing high-grade, Dy/Tb-rich concentrates without conventional flotation, acid leaching or reagent-intensive processing.

The REE concentration enhancement and impurity rejection results observed through the aforementioned FJH test work indicate potential to support alternative downstream processing pathways for carbonatite-hosted rare earth projects such as Pomme, compared to conventional techniques. Alignment with MTM provides NFM with early integration of advanced metallurgical test work, access to MTM's Texas Technology Campus for testing, and a clear potential pathway to Western-aligned rare earth supply chains, including U.S. magnet and defence markets, reinforcing the strategic value of the Pomme Project within a vertically integrated rare earth development strategy.

NEXT STEPS

Preliminary metallurgical test work

Selection of diamond drill core for characterisation tests and accelerate metallurgical assessment on existing diamond core samples, utilising conventional metallurgical test work and tailored MTM Flash Joule Heating (FJH) processing technology to beneficiate and upgrade REE sample.

Model geology, drilling and target high-grade mineralisation

Integration of geological logging, assay results and geophysics into 3D model and identification of continuous higher grade zones for follow-up drilling.

OPTION AND EARN-IN TERMS

The Pomme Project consists of 43 mineral claims, covering 2,400 ha. New Frontier Minerals holds the exclusive and binding option to acquire 90% of the Pomme REE-Nb project from Metallium.

Key Terms Summary – Pomme Rare Earth Project Option & Earn up to 90% interest in the project tenements from Metallium Ltd (via its option to acquire 100% of Critical Element Exploration Pty Ltd, holder of the GeoMega option).

Option Terms and Earn-in Terms

Option Fee:

- A\$100,000 cash (A\$50,000 already paid as an exclusivity deposit)
- A\$200,000 in NFM shares, (issued at 5-day VWAP, 6-months escrow)
- Option Period: Commences on access to historic drill samples for 24-month duration with exclusive rights to manage exploration and technical work during the option period

Stage 1 – Option Exercise (Initial Earn-In)

Upon exercise of the option at any time during the Option Period (subject to conditions precedent), NFM must pay the following option exercise fee:

- Cash: A\$150,000
- Equity: A\$200,000 in NFM shares (20-day VWAP, 6-month escrow)Result: Entry into Joint Venture and commencement of staged earn-in
- Minimum annual expenditure of A\$100,000 per annum

Exercise of the Option is conditional upon the satisfaction (or waiver as applicable) of the following conditions precedent:

- Due diligence: completion of financial, legal and technical due diligence on the Tenements, to the absolute satisfaction of NFM;
- Third party approvals: the Parties obtaining all third party approvals and consents, necessary to lawfully complete the matters set out in this Agreement;

- Deeds of assignment and assumption: MTM, NFM executing a deed of assignment and assumption in relation to all material agreements;
- Joint Venture Agreement: the Parties entering into a definitive Joint Venture Agreement consistent with the terms and conditions set out in the binding Agreement;
- MTM and/ or its subsidiaries being the 100% legal and beneficial owner of the Tenements; and
- Technology Licence Agreement: MTM and NFM entering into a definitive Technology Licence Agreement consistent with the terms and conditions set out in the binding Agreement;

(together, the Conditions Precedent).

Stage 2 – JORC Resource Milestone (within 3 years)

- Minimum Spend: A\$2.0 million
- Interest Earned: 80% project interest
- Milestone Payment: A\$250,000 cash and A\$250,000 in NFM shares (20-day VWAP, 6-month escrow) upon earning an 80% interest

Stage 3 – Pre-Feasibility Study Milestone (within 5 years)

- Minimum Spend: A\$3.0 million
- Interest Earned: 90% project interest
- Milestone Payment: A\$250,000 cash and A\$250,000 in NFM shares (20-day VWAP, 6-month escrow) upon earning a 90% interest

Residual Interest & FJH Royalty

- Vendor retains 10% free-carried interest to DFS
- If diluted below 10%, interest converts to a 1.5% NSR royalty on material processed through Metallium's FJH facility
- Existing third-party royalties (GeoMega/Niogold) remain in place

Technology Alignment

- Metallium retains ownership of its Flash Joule Heating (FJH) processing technology
- Parties may enter into a separate technology licence agreement, including per-tonne fees, annual licence fees, and royalties (commercial terms to be negotiated)

ENDS

This announcement was approved for release by the Board of New Frontier Minerals Limited.

REFERENCES

- 1) 18 November 2025 - NFM ASX Release "Binding Commercial Framework with Metallium Post Exceptional Heavy Rare Earth Results from Harts Range"
- 2) 4 October 2023 - MTM ASX Release "Investor Update Presentation Deck Exploration Success at the Pomme REE-Nb Project in Québec"
- 3) 28 September 2023 - MTM ASX Release "High grade total rare earth element oxide (TREO) drilling results returned over significant widths at the Pomme REE-Nb Project, Québec"
- 4) 9 October 2023 - MTM ASX Release "Pomme Project drilling returns more rare earths intercepts. Assay results up to 2.72% (27,200ppm) TREOs"
- 5) 24 October 2023 - MTM ASX Release "Pomme Project drilling identifies new zones of rare earth and niobium mineralisation"
- 6) 15 November 2023 - MTM ASX Release "Pomme Project drilling identifies new zones of rare earth and niobium mineralisation within carbonatite complex"
- 7) 3 January 2024 - MTM ASX Release "New broad zones of REE-Niobium mineralisation identified within Pomme Project carbonatite complex"
- 8) ALS Canada lab assay results, Montreal, QC, Canada - job certificate VO23203086 (10 September 2023)

For further information please contact

New Frontier Minerals (Australia)	Joel Logan E. jlogan@newfrontierminerals.com
St Brides Partners (United Kingdom) Media & Investor Relations	Ana Reberio E. ana@stbridespartners.co.uk

About New Frontier Minerals

New Frontier Minerals Limited is an Australian-based focussed explorer, with a strategy to develop multi-commodity assets that demonstrate future potential as an economic mining operation. Through the application of disciplined and structured exploration, New Frontier has identified assets deemed core and is actively progressing these interests up the value curve. Current focus will be on advancing exploration activity at the Harts Range Niobium, Uranium and Heavy Rare Earths Project which is circa 140km north-east from Alice Springs in the Northern Territory. Other interests include the NWQ Copper Project, situated in the copper-belt district circa 150km north of Mt Isa in Queensland.

New Frontier Minerals is listed on the LSE and ASX under the ticker "NFM".

Competent Persons Statement

The scientific and technical information in this announcement, which relates to exploration results, preliminary sequential metallurgical results and the geology of the deposits described, is based on information compiled and approved for release by Mark Biggs. Mark Biggs is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM Member # 107188) and meets the requirements of a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012 Edition). Mark Biggs has 35 years of experience relevant to Rare Earth Elements (REE), industrial mineral copper mineralisation types, as well as expertise in the quality and potential mining methods of the deposits under consideration. Additionally, he has 25 years of experience in the estimation, assessment, and evaluation of exploration results and mineral resource estimates, which are the activities for which he accepts responsibility. He also successfully completed an AusIMM

Online Course Certificate in 2012 JORC Code Reporting. Mark Biggs is a consultant with ROM Resources and was engaged by New Frontier Minerals Limited to prepare the documentation for several prospects, specifically those within the Harts Range Prospects upon which the Report is based.

Furthermore, the full nature of the relationship between himself and New Frontier Minerals Limited has been disclosed, including any potential conflicts of interest. Mark Biggs is a director of ROM Resources, a company that is a shareholder of New Frontier Minerals Limited, and ROM Resources provides occasional geological consultancy services to New Frontier Minerals Limited. The Report or excerpts referenced in this statement have been reviewed, ensuring that they are based on and accurately reflect, in both form and context, the supporting documentation relating to exploration results and any mineral resource estimates. The release of the Report and this statement has been consented to by the Directors of New Frontier Minerals Limited. Mr Biggs consents to the inclusion in this announcement of the matters based on his information and supporting documents in the form and context in which it appears.

Forward Looking Statements

Certain information in this document refers to the intentions of New Frontier Minerals Ltd, but these are not intended to be forecasts, forward-looking statements, or statements about future matters for the purposes of the Corporations Act or any other applicable law. The occurrence of events in the future is subject to risks, uncertainties and other factors that may cause New Frontier Minerals Ltd's actual results, performance, or achievements to differ from those referred to in this announcement. Accordingly, New Frontier Minerals Ltd, its directors, officers, employees, and agents, do not give any assurance or guarantee that the occurrence of the events referred to in this announcement will occur as contemplated. The interpretations and conclusions reached in this announcement are based on current geological theory and the best evidence available to the authors at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however high these probabilities might be, they make no claim for complete certainty. Any economic decisions that might be taken based on interpretations or conclusions contained in this announcement will therefore carry an element of risk. The announcement may contain forward-looking statements that involve several risks and uncertainties. These risks include but are not limited to, economic conditions, stock market fluctuations, commodity demand and price movements, access to infrastructure, timing of approvals, regulatory risks, operational risks, reliance on key personnel, Ore Reserve and Mineral Resource estimates, native title, foreign currency fluctuations, exploration risks, mining development, construction, and commissioning risk. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward-looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

ASX Listing Rule 5.23.2

New Frontier Minerals Ltd confirms that it is not aware of any new information or data that materially affects the information included in this market announcement and that all material assumptions and technical parameters underpinning the estimates in this market announcement continue to apply and have not materially changed

APPENDIX A – POMME PROJECT DRILL HOLE DETAILS

Hole ID	East	North	Elevation (masl)	Dip (°)	Azimuth (°)	EOH Depth (m)	Status
POM-23-01	389,104.80	5,526,970.76	284.73	-50	000	558	Completed
POM-23-02	389,106.83	5,527,472.61	283.13	-50	000	330	Completed
POM-23-03	389,063.23	5,527,503.65	283.32	-50	160	414	Completed
POM-23-04	389,300.03	5,527,958.58	279.79	-50	325	405	Completed
POM-23-05	389,611.51	5,526,765.31	276.92	-50	000	501	Completed
POM-23-06	389,919.77	5,526,988.35	275.74	-50	000	225	Completed
POM-23-07	389,524.14	5,527,208.74	279.75	-50	000	444	Completed
POM-23-08	389,599.10	5,527,688.46	280.54	-50	000	351	Completed
POM-23-09	389,586.18	5,528,102.00	280.05	-50	000	555	Completed
POM-23-10	390,116.14	5,528,057.95	274.31	-50	000	393	Completed
POM-23-11	390,021.82	5,527,638.36	276.28	-50	180	516	Completed
POM-23-12	390,052.07	5,527,693.66	275.93	-50	335	582	Completed
POM-23-13	388,878.14	5,527,594.96	284.03	-50	300	444	Completed

Notes:

1. Coordinate system North American Datum 1983 (NAD 83), UTM Zone 18 EOH – End of Hole

APPENDIX B – SIGNIFICANT DRILL INTERSECTIONS

Drill Hole POM-23-01

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
31.75	545	513.25	0.33	0.08	1.8	22	1,000
31.75	37.85	6.1	0.29	0.14	4.7	25	2,000
45.3	49.9	4.6	0.25	0.05	2.1	25	2,000
54.6	59.5	4.9	0.26	0.10	2.0	25	2,000
66.0	95.6	29.6	0.31	0.12	2.5	24	2,000
Including:							
88.5	92.5	4.0	0.55	0.14	1.9	20	5,000
103.0	115.0	12.0	0.21	0.11	2.3	23	2,000
118.0	147.0	29.0	0.41	0.09	2.2	20	2,000
Including:							
122.5	127.0	4.5	0.69	0.11	2.4	18	5,000
154.0	164.5	10.5	0.29	0.03	1.8	29	2,000
167.5	170.5	3.0	0.28	0.06	2.0	26	2,000
174.5	191.0	16.5	0.36	0.14	2.0	19	2,000
Including:							
175.6	176.55	0.95	1.74	0.0	0.47	12	10,000
198.5	212.0	13.5	0.25	0.16	1.9	26	2,000
216.15	259.5	43.35	0.45	0.12	2.3	19	2,000
Including:							
228.6	232.7	4.1	0.80	0.08	0.5	16	5,000
238.5	246.1	7.6	0.91	0.20	3.6	15	5,000
262.5	274.8	12.3	0.27	0.08	3.3	27	2,000
283.5	304.5	21.0	0.33	0.06	0.2	24	2,000
309.75	314.0	4.25	0.22	0.03	1.6	23	2,000
317.0	448.0	131	0.47	0.05	1.4	21	2,000
Including:							
335.0	355.0	20.0	0.68	0.06	1.2	20	5,000
336.85	339.5	2.65	1.47	0.02	0.4	13	10,000
370.0	382.55	12.55	0.50	0.08	1.9	22	5,000
402.5	411.9	9.4	0.86	0.02	0.8	19	5,000
407.0	411.9	4.9	1.11	0.02	0.0	17	10,000
421.35	428.3	6.95	0.96	0.0	0.0	18	5,000
421.35	424.0	2.65	1.48	0.0	0.0	15	10,000
461.5	463.5	2.0	0.26	0.05	2.6	22	2,000
466.5	483.0	16.5	0.40	0.03	1.2	19	2,000
Including:							
476.0	478.3	2.3	0.90	0.02	0.6	17	5,000
512.5	538.5	26.0	0.31	0.07	1.5	22	2,000
542.1	545.0	1.9	0.29	0.04	0.3	24	2,000
555.0	558 (EOH)	3.0	0.32	0.04	0.3	21	2,000

Drill Hole POM-23-02

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
18.0	330.0 (EOH)	312.0	0.19	0.04	0.5	25	1,000
Including:							
61.5	99.0	37.5	0.28	0.06	0.05	26	2,000
79.5	84.0	4.5	0.59	0.06	0.04	26	5,000
103.5	118.5	15.0	0.24	0.06	0.08	26	2,000
166.5	168.0	1.5	0.52	0.06	0.54	31	5,000
180.0	193.5	13.5	0.29	0.03	0.69	22	2,000
198.0	213.0	15.0	0.34	0.04	0.65	25	2,000

Drill Hole POM-23-03

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
16.25	414.0 (EOH)	397.75	0.54	0.05	0.63	23	1,000
52.0	127.0	75.0	0.22	0.05	0.61	22	2,000
133.0	382.0	249.0	0.73	0.05	0.58	23	2,000
139.5	169.5	30.0	0.67	0.06	0.91	22	5,000
Including:							
154.5	159.0	4.5	1.12	0.03	0.12	19	10,000
174.0	210.0	36.0	0.92	0.04	0.68	26	5,000
Including:							
184.5	202.5	18.0	1.16	0.03	0.49	27	10,000
216.0	267.0	51.0	0.92	0.05	0.19	25	5,000
Including:							
228.0	237.0	9.0	1.21	0.03	0.06	27	10,000
254.0	262.5	8.5	1.62	0.03	0.46	20	10,000
289.5	303.0	13.5	0.53	0.06	0.26	22	5,000
311.5	342.0	30.5	1.13	0.03	0.18	22	5,000
Including:							
321.0	337.5	26.5	1.45	0.02	0.02	22	10,000
346.5	358.3	11.8	0.81	0.11	1.13	19	5,000
Including:							
349.5	357.0	7.5	0.97	0.12	1.31	19	10,000
367.5	379.1	11.6	0.68	0.06	0.51	25	5,000

Drill Hole POM-23-04

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
36.8	303.0	266.2	0.22	0.04	0.7	26	1,000
79.0	118.5	39.5	0.46	0.05	0.8	27	2,000
Including							
90.5	94.75	4.25	0.88	0.07	0.7	28	5,000
126.0	147.0	21.0	0.25	0.12	1.3	26	2,000

Drill Hole POM-23-05

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
225.0	501.0 (EOH)	276.0	0.37	0.08	1.5	26	1,000
226.5 Including 229.4	235.5	9.0	0.94	0.02	0.0	32	2,000
233.2	235.5	3.8	1.46	0.01	0.0	31	10,000
240.0	255.9	15.9	0.25	0.05	0.8	30	2,000
261.0	271.5	10.5	0.22	0.15	1.6	30	2,000
292.5	369.0	76.2	0.31	0.08	1.2	26	2,000
375.0 Including 381.5	432.0	57.0	0.47	0.10	1.0	23	2,000
404.4	384.9	3.4	1.99	0.02	0.0	22	10,000
437.5 Including 439.0	415.5	11.1	0.83	0.04	0.3	21	5,000
451.7	501.0 (EOH)	63.5	0.48	0.06	2.7	23	2,000
		12.7	1.04	0.04	1.4	20	10,000

Drill Hole POM-23-06

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
20.65	25.0	4.35	0.11	0.01	0.2	29	1,000
59.5	63.65	4.15	0.12	0.03	0.9	30	1,000
76.0	77.5	1.5	0.74	0.03	0.0	40	5,000
80.5	88.0	7.5	0.10	0.03	0.1	31	1,000
123.5	130.5	7.0	0.14	0.04	1.6	27	1,000
156.0	160.6	4.6	0.16	0.04	2.3	27	1,000
163.7	168.0	4.3	0.16	0.04	2.0	27	1,000
173.5	182.2	8.7	0.17	0.06	3.0	30	1,000
191.7	197.5	5.8	0.19	0.02	2.6	27	1,000
208.5	223.5	15.0	0.19	0.08	1.4	29	1,000

Drill Hole POM-23-07

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
18.8 including: 18.8	82.2	63.4	0.27	0.10	1.28	29	1,000
62.2	36.15	17.35	0.33	0.10	0.65	29	2,000
	73.5	11.3	0.30	0.08	1.65	29	2,000
133.0 including: 144.5	162.0	29.0	0.34	0.11	1.75	29	2,000
170.5 Including: 170.5	190.8	20.3	0.79	0.03	0.70	24	5,000
181.85	172.1	1.6	1.25	0.06	1.98	20	10,000
	186.80	4.95	1.26	0.02	0.01	23	10,000
190.8 including: 213.0	237.0	47.8	0.30	0.07	1.15	27	2,000
249.0 including: 331.5	355.5	106.5	0.27	0.04	0.93	26	2,000
	336.0	4.5	0.53	0.06	0.83	26	5,000
378.0 including: 387.0	425.5	47.5	0.42	0.05	1.12	25	2,000
401.9	393.0	6.0	0.60	0.06	1.58	25	5,000
419.5	402.9	1.0	1.80	0.04	0.73	22	10,000
	420.75	1.25	3.34	0.03	1.58	19	10,000
439.0	444.0 EOH	5.0	0.31	0.12	1.89	29	2,000

Drill Hole POM-23-08

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
15.55	20.5	4.95	0.23	0.05	0.6	24	2,000
24.0	25.5	1.5	0.70	0.0	6.2	19	5,000
122.0	271.5	149.5	0.32	0.05	1.0	24	1,000
122.0 including: 138.5	140.0	18.0	0.29	0.06	0.5	25	2,000
	140.0	1.5	0.60	0.05	1.6	22	5,000
146.0 including: 171.5	257.0	111.0	0.35	0.05	1.1	24	2,000
204.5 including: 206.0	174.5	3.0	0.73	0.05	0.5	20	5,000
215.0	216.5	12.0	0.73	0.06	1.3	22	5,000
	207.5	1.5	1.14	0.05	2.9	20	10,000
262.5	216.5	1.5	1.31	0.06	2.2	21	10,000
	270.0	7.5	0.33	0.05	0.5	26	2,000

Drill Hole POM-23-09

From (m)	To (m)	Length (m)	Grade			Nd+Pr (% TREO)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
24.0	75.0	51.0	0.16	0.04	1.7	24	1,000
including:							
30.0	47.0	17.0	0.21	0.05	3.4	24	2,000
79.5	112.5	33.0	0.12	0.04	1.5	30	1,000
123.0	151.0	28.0	0.16	0.06	2.8	31	1,000
including:							
130.5	135.5	5.0	0.24	0.03	2.7	37	2,000
156.0	166.5	10.5	0.16	0.08	4.7	26	1,000
174.0	404.55	230.55	0.20	0.06	3.3	25	1,000
including:							
225.0	231.0	6.0	0.25	0.03	4.3	29	2,000
237.0	244.5	7.5	0.21	0.07	1.0	28	2,000
250.95	253.15	2.2	0.47	0.03	1.4	26	2,000
259.5	286.5	27.0	0.28	0.08	4.2	23	2,000
310.5	325.5	15.0	0.30	0.05	3.1	24	2,000
including:							
321.0	322.5	1.5	0.73	0.04	2.4	18	5,000
331.5	363.0	31.5	0.29	0.05	5.2	24	2,000
including:							
360.0	361.5	1.5	0.64	0.05	2.8	17	5,000
367.5	390.0	22.5	0.25	0.03	3.2	23	2,000
including:							
376.7	378.0	1.3	0.82	0.02	2.6	18	5,000
409.5	430.5	21.0	0.18	0.05	3.6	34	1,000
459.0	519.0	60.0	0.23	0.04	6.6	27	1,000
including:							
474.2	476.7	2.5	0.57	0.02	22.9	31	5,000
474.2	482.3	8.1	0.35	0.03	14.3	29	2,000
495.2	516.0	20.8	0.30	0.03	8.0	25	2,000
545.75	555.0 (EOH)	9.25	0.20	0.01	2.2	22	1,000

Drill Hole POM-23-10

From (m)	To (m)	Length (m)	Grade			Nd+Pr (%)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
15.8	92.0	76.2	0.13	0.07	3.7	28	1,000
101.3	120.0	18.7	0.09	0.05	2.0	27	1,000
183.0	192.0	9.0	0.13	0.07	0.9	28	1,000
195.0	199.5	4.5	0.16	0.15	2.3	28	1,000
226.5	250.5	24.0	0.17	0.07	2.4	29	1,000
including:							
234.0	235.5	1.5	0.53	0.13	0.9	32	5,000
252.5	255.0	2.5	0.27	0.10	4.0	30	1,000
258.8	261.8	3.0	0.22	0.04	2.9	28	1,000
321.2	337.0	15.8	0.18	0.11	3.4	24	1,000

Drill Hole POM-23-11

From (m)	To (m)	Length (m)	Grade			Nd+Pr (% TREO)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
22.65	491.0	468.35	0.29	0.06	2.4	28	1,000
including:							
22.65	33.0	10.35	0.26	0.05	2.9	29	2,000
54.0	60.0	6.0	0.29	0.03	2.2	29	2,000
70.45	74.95	4.5	0.48	0.03	3.0	27	2,000
79.5	138.0	58.5	0.28	0.07	1.9	32	2,000
including:							
88.5	91.3	2.8	0.57	0.04	0.2	28	5,000
142.5	159.0	16.5	0.26	0.06	3.3	32	2,000
163.5	190.5	27.0	0.27	0.07	3.0	33	2,000
213.0	235.85	22.85	0.23	0.12	3.5	33	2,000
239.7	245.9	6.2	0.23	0.13	3.2	33	2,000
252.0	326.75	74.75	0.47	0.06	2.3	25	2,000
including:							
259.5	277.5	18.0	0.57	0.06	1.9	26	5,000
261.0	262.5	1.5	1.02	0.09	0.7	25	10,000
286.75	288.4	1.65	2.00	0.03	1.2	16	10,000
294.5	309.25	14.75	0.55	0.06	2.7	22	5,000
294.5	296.0	1.5	1.09	0.04	2.4	18	10,000
331.5	349.5	18.0	0.26	0.04	3.7	28	2,000
353.5	409.0	55.5	0.34	0.05	3.5	26	2,000
including:							
384.0	390.0	6.0	0.55	0.06	5.2	23	5,000
422.5	478.5	56.0	0.35	0.05	1.9	26	2,000
457.5	462.0	4.5	0.55	0.07	1.3	28	5,000

Drill Hole POM-23-12

From (m)	To (m)	Length (m)	Grade			Nd+Pr (% TREO)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
19.6 including: 21.0 37.5 64.5	79.5	59.9	0.23	0.05	5.6	31	1,000
83.5 including: 88.5 123.0	582.0 (EOH)	498.5	0.22	0.09	2.9	29	1,000
147.0 including: 148.7	178.5	31.5	0.29	0.06	3.8	24	2,000
207.0 258.0 316.5	238.5 280.5 345.0	31.5 22.5 28.5	0.25 0.24 0.26	0.04 0.05 0.11	3.8 3.7 2.2	31 31 29	2,000 2,000 2,000
349.5 including: 363.0	369.0	19.5	0.25	0.09	2.8	28	2,000
379.5	400.9	21.4	0.23	0.08	3.4	29	2,000
415.55 including: 415.55 420.0 424.1	441.0	25.45	0.30	0.11	2.3	27	2,000
462.0 537.0 including: 537.0	488.0 558.0 538.5	26.0 21.0 1.5	0.28 0.28 0.66	0.08 0.11 0.17	1.9 2.3 3.8	29 29 30	2,000 2,000 5,000

Drill Hole POM-23-13

From (m)	To (m)	Length (m)	Grade			Nd+Pr (% TREO)	TREO Cut-off (ppm)
			TREO (%)	Nb ₂ O ₅ (%)	P ₂ O ₅ (%)		
22.5	27.0	4.5	0.22	0.04	0.3	20	2,000
32.4 including: 33.75	37.5 35.8	5.1 2.05	0.51 0.92	0.04 0.01	1.6 2.53	23 23	2,000 5,000
71.7 including: 75.7 84.0 84.0 90.75	402.0 93.0 93.0 85.0 93	330.3 17.3 9.0 1.0 2.25	0.34 0.52 0.71 2.09 1.15	0.02 0.03 0.02 0.02 0.04	1.1 0.4 0.1 0.0 0.1	21 20 18 16 20	1,000 2,000 5,000 10,000 10,000
97.6 including: 103.5	115.5 108.0	17.9 4.5	0.39 0.74	0.03 0.03	0.3 0.5	20 18	2,000 5,000
126.0 including: 130.5	138.0 135.0	12.0 4.5	0.48 0.68	0.05 0.10	0.7 0.7	19 18	2,000 5,000
159.0	211.5	52.5	0.30	0.03	1.1	22	2,000

217.4 including: 231.0	252.3 232.5	34.9 1.5	0.39 1.50	0.02 0.02	1.3 0.3	21 20	2,000 10,000
256.1 including: 267.0 273.0	297.0 277.5 274.8	40.9 10.5 1.8	0.38 0.62 1.03	0.02 0.03 0.02	2.0 1.7 0.6	21 21 21	2,000 5,000 10,000
301.5 including: 305.2	327.0 307.1	25.5 1.9	0.40 1.05	0.02 0.01	0.8 0.13	21 19	2,000 10,000
331.55 including: 363.0 366.0 381.0	402.0 370.4 367.35 382.5	70.45 7.4 1.35 1.5	0.37 0.69 1.48 1.15	0.02 0.01 0.0 0.01	0.7 0.8 0.9 0.8	20 18 16 16	2,000 5,000 10,000 10,000
	417.95	420.75	2.8	1.0	0.03	0.2	5,000

Notes:

2. Downhole intervals shown, true width not known. Appropriate rounding of grade values has been applied.
3. TREO (Total Rare Earth Oxide) grade includes CeO_2 , Dy_2O_3 , Er_2O_3 , Eu_2O_3 , Gd_2O_3 , Ho_2O_3 , La_2O_3 , Lu_2O_3 , Nd_2O_3 , Pr_6O_{11} , Sm_2O_3 , Tb_4O_7 , Tm_2O_3 , Yb_2O_3 and Y_2O_3 and is calculated using standard oxide conversion factors for each element (see Appendix C).
4. Nd+Pr (Neodymium-Praseodymium or NdPr) includes Nd_2O_3 and Pr_6O_{11} . Shown as a percentage of TREO. Significant intersections are based on 1,000ppm, 2,000ppm, 5,000ppm and 10,000ppm TREO cut-off grades with up to 2 consecutive samples of internal dilution.

APPENDIX C - JORC Compliance Tables

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<ul style="list-style-type: none"> Diamond drilling was used to obtain a continuous rock core from the base of cover to end of hole (EOH). Half-cut diamond drill core sampling with a diamond core saw to obtain samples for assay. Samples typically represent 1.5 metres length downhole, with adjustments for geological boundaries. In the laboratory, samples are crushed, then pulverised to a nominal 85% passing 75 microns to obtain a homogenous sub-sample for assay. Sampling was carried out using standard protocols and QAQC procedures and is considered industry-best practice.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<ul style="list-style-type: none"> Diamond drilling technique was employed. NQ core size (core diameter 47.6 mm). Standard inner tube core recovery method. Drill core was not oriented.
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<ul style="list-style-type: none"> Core is routinely measured and compared with drilling depth to assess recovery. Recovery is excellent, typically 100%. There is no apparent relationship between recovery and grade.
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<ul style="list-style-type: none"> Drill core has been geologically logged to a level of detail to support appropriate future Mineral Resource estimation. Logging is qualitative in nature. pXRF readings have been routinely taken to confirm REE mineralisation is present and calibrate visual mineralisation estimates. Core photography has been routinely undertaken.

Criteria	JORC Code Explanation	Commentary
		<ul style="list-style-type: none"> 100% of the drill core and the relevant mineralisation intersections have been logged. Drill core is currently stored at the field camp site.
<i>Sub-sampling techniques and sample preparation</i>	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<ul style="list-style-type: none"> Half-core samples from diamond drill core were taken. Typical 1.5 metre length samples, locally adjusted to account for geological boundaries were bagged and submitted to the analytical laboratory for sample preparation. Non-mineralised intervals (as identified by visual logging) were not systematically sampled. Samples were weighed, dried, crushed and pulverised to produce a 250g assay charge with 85% passing 75 microns. This is considered industry-standard and appropriate. QAQC procedures involved the use of certified reference materials (standards), blanks and ¼ core field duplicates which account for approximately 8% of the total submitted samples. The sample sizes are considered appropriate for the style of rare earth element and niobium mineralisation previously recorded for the area.
<i>Quality of assay data and laboratory tests</i>	<ul style="list-style-type: none"> <i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i> <i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i> <i>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</i> 	<ul style="list-style-type: none"> Drilling samples have been submitted to ALS Canada for a multi-element assay technique (ME-MS61r) including REE using multi-acid (4 acid) digestion with an ICP-MS or ICP-AES finish. Samples were also assayed using a whole rock technique (ME-XRF26) utilising fusion/XRF finish. Selected samples were also assayed for gold by fire assay with a AAS finish (Au-AA25). Over-range REE samples were re-assayed by a lithium borate fusion technique, analysed by ICP-AES (REE-OGREE) or analysed by ICP-MS (Nd-MS85). Over-range Nb samples were re-assayed by fusion/XRF (Nb-XRF10). The assay techniques are considered appropriate and are industry best standard. The techniques are considered to be a near total digest, only the most resistive minerals are only partially dissolved. An internal QAQC procedure involving the use of certified reference materials (standards), blanks and ¼ core duplicates accounts for approximately 8% of the total submitted samples. The certified reference materials used have a representative range of values typical for REE and Nd mineralisation. Standard results for drilling samples demonstrated assay values are both accurate and precise. Blank results

Criteria	JORC Code Explanation	Commentary
		demonstrate there is negligible cross-contamination between samples. Duplicate results suggest there is reasonable repeatability between samples.
Verification of sampling and assaying	<ul style="list-style-type: none"> <i>The verification of significant intersections by either independent or alternative company personnel.</i> <i>The use of twinned holes.</i> <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> Significant intersections have not been verified. Primary data is collected digitally and is validated and stored in an industry standard master database. No adjustments have been made to primary assay data. Element oxide conversion calculations have been applied to assay results (see details below). Length-weighted intersections are reported.
Location of data points	<ul style="list-style-type: none"> <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> <i>Specification of the grid system used.</i> <i>Quality and adequacy of topographic control.</i> 	<ul style="list-style-type: none"> Drill hole collar locations have been surveyed using differential GPS with an accuracy of approximately ±5mm. Downhole surveys have been completed using a non-continuous multishot REFLEX EZ-TRAC device. The grid system used for is North American Datum 1983 (NAD 83), UTM Zone 18. Topographic control is based on differential GPS with an accuracy of approximately ±5mm.
Data spacing and distribution	<ul style="list-style-type: none"> <i>Data spacing for reporting of Exploration Results.</i> <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	<ul style="list-style-type: none"> Reported results are from 4 diamond drill holes only, part of a broad-spaced drilling grid (500m x 500m) over the target area. Data spacing between drillholes is currently not suitable to establish geological and grade continuity. No sample compositing has been applied.
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	<ul style="list-style-type: none"> Results are from an angled drill hole and the orientation of the mineralisation structures is not known. Information is not yet available to determine if the orientation of the drill hole could potentially introduce a sampling bias.
Sample security	<ul style="list-style-type: none"> <i>The measures taken to ensure sample security.</i> 	<ul style="list-style-type: none"> Sample chain of custody is managed by the geological consultants on-site, employed by Kintavar Exploration inc. (Kintavar). Sampling was carried out by Kintavar field staff at the project field camp. Samples were transported to a sample preparation facility in the town of Val d'Or by Kintavar field staff. Assay samples were managed and transported by ALS Canada.
Audits or reviews	<ul style="list-style-type: none"> <i>The results of any audits or reviews of sampling techniques and data.</i> 	<ul style="list-style-type: none"> No audits or reviews have been completed. Sampling techniques are considered to comply with industry best practice.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<ul style="list-style-type: none"> The tenements relevant to this announcement are 24 claims located in Québec, Canada. The claims are held 100% by Geomega Resources Inc. A net smelter royalty of no more than 3% is payable to Geomega and Osisko Gold Royalties. MTM Critical Metals Ltd has executed an option agreement to acquire a 100% interest in the claims subject to cash and share based payments and exploration expenditure requirements. The tenements are located on Category II Lands of the Cree First Nation of Waswanipi. Mining, exploration and geoscientific works must be carried out in such a manner as to avoid unreasonable conflict with the rights of the First Nation people. 16 claims are located wholly or in part within restricted areas associated with government hydro-electric schemes, but this is not considered to be an impediment to exploration or future development. The tenements are secure and there are no known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	<ul style="list-style-type: none"> <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<ul style="list-style-type: none"> Previous exploration of the project area is limited. In the early 1990's airborne magnetic surveys identified a circular magnetic anomaly that was considered as a potential kimberlite-hosted diamond target. No drilling was completed. Detailed geological mapping of the area was undertaken in 2005 but carbonatite was not identified, probably due to limited bedrock exposures. Geomega Resources Inc. completed a reconnaissance exploration program for REE mineralisation comprising surface geochemical sampling (MMI) and airborne geophysics (magnetics-radiometrics) in 2011. The program culminated in the drilling of 2 diamond drill holes in 2012 to test geochemical and geophysical anomalies. Drilling confirmed the presence of a REE-Nb mineralised carbonatite.
Geology	<ul style="list-style-type: none"> <i>Deposit type, geological setting and style of mineralisation.</i> 	<ul style="list-style-type: none"> The Pomme project is centred on a carbonatite intrusive complex containing REE-Nb mineralisation. The carbonatite is interpreted to be Paleoproterozoic in age and has intruded a metamorphosed sequence of basalts within the Abitibi Province of the Canadian Shield.

Criteria	JORC Code Explanation	Commentary
		<ul style="list-style-type: none"> The carbonatite is characterised by a prominent, ellipsoidal, km-scale magnetic anomaly that is similar in character and magnitude to the nearby Montviel carbonatite intrusive located 7km to the south. The carbonatite complex is composed of four main intrusive carbonatitic rock types: silicocarbonatite, calciocarbonatite, ferrocarbonatite and ultramafic silicocarbonatite. The carbonatite complex is undeformed, but magmatic and/or hydrothermal breccia intervals are frequently observed in every carbonatite unit with different levels of intensity. Two general types of REE mineralisation are recognised in the current drill holes. The first is present as interstitial, relatively coarse fluoro-carbonate mineralisation. The second type of mineralisation occurs as pervasive phosphate mineralisation (alteration-replacement). The host rock units intersected on the margins of the carbonatite complex are altered wacke and/or mudstone (metasediments) part of a volcano-sedimentary sequence. Metasediments intervals are frequently defined by a foliation/lamination, and locally disturbed bedding. Contact zones seems to be very gradual in character, with carbonatite intrusions decreasing in abundance over several hundred of metres.
Drill hole Information	<ul style="list-style-type: none"> <i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including Easting and northing of the drill hole collar, Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> All material information is summarised in Appendix A and in the Tables and Figures included in the body of the announcement.
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> 	<ul style="list-style-type: none"> Length-weighted average grades are reported. No maximum grade truncations have been applied. Significant intersections are reported based on a 1,000ppm or 2,000ppm total rare earth oxide (TREO) cut-off grade with a maximum of 2 consecutive samples of internal dilution. Where appropriate higher-grade intersections are reported based on a 5,000ppm or 10,000ppm TREO cut-off with a maximum of 2 consecutive samples of internal dilution.

Criteria	JORC Code Explanation	Commentary																																																						
	<ul style="list-style-type: none"> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> No metal equivalent values have been reported. Multi-element results are converted to stoichiometric oxide values using element-to-stoichiometric oxide conversion factors. These stoichiometric conversion factors are stated in the table below and can be referenced in appropriate publicly available technical data. Rare earth oxide (REO) is the industry accepted form for reporting rare earths. Total rare earth oxide (TREO) values were derived by the simple addition of grades for lanthanum (La_2O_3), cerium (CeO_2), praseodymium (Pr_6O_{11}), neodymium (Nd_2O_3), samarium (Sm_2O_3), europium (Eu_2O_3), gadolinium (Gd_2O_3), terbium (Tb_4O_7), dysprosium (Dy_2O_3), holmium (Ho_2O_3), erbium (Er_2O_3), thulium (Tm_2O_3), ytterbium (Yb_2O_3), lutetium (Lu_2O_3) and yttrium (Y_2O_3). Nd+Pr REO (NdPr) grade includes Nd_2O_3 and Pr_6O_{11}. Reported as percentage of TREO. <table border="1" data-bbox="1267 695 1783 1293"> <thead> <tr> <th data-bbox="1267 695 1446 769">Element</th><th data-bbox="1446 695 1603 769">Conversion Factor</th><th data-bbox="1603 695 1783 769">Oxide Form</th></tr> </thead> <tbody> <tr> <td data-bbox="1267 769 1446 801">Ce</td><td data-bbox="1446 769 1603 801">1.2284</td><td data-bbox="1603 769 1783 801">CeO_2</td></tr> <tr> <td data-bbox="1267 801 1446 833">Dy</td><td data-bbox="1446 801 1603 833">1.1477</td><td data-bbox="1603 801 1783 833">Dy_2O_3</td></tr> <tr> <td data-bbox="1267 833 1446 864">Er</td><td data-bbox="1446 833 1603 864">1.1435</td><td data-bbox="1603 833 1783 864">Er_2O_3</td></tr> <tr> <td data-bbox="1267 864 1446 896">Eu</td><td data-bbox="1446 864 1603 896">1.1579</td><td data-bbox="1603 864 1783 896">Eu_2O_3</td></tr> <tr> <td data-bbox="1267 896 1446 928">Gd</td><td data-bbox="1446 896 1603 928">1.1526</td><td data-bbox="1603 896 1783 928">Gd_2O_3</td></tr> <tr> <td data-bbox="1267 928 1446 960">Ho</td><td data-bbox="1446 928 1603 960">1.1455</td><td data-bbox="1603 928 1783 960">Ho_2O_3</td></tr> <tr> <td data-bbox="1267 960 1446 991">La</td><td data-bbox="1446 960 1603 991">1.1728</td><td data-bbox="1603 960 1783 991">La_2O_3</td></tr> <tr> <td data-bbox="1267 991 1446 1023">Lu</td><td data-bbox="1446 991 1603 1023">1.1372</td><td data-bbox="1603 991 1783 1023">Lu_2O_3</td></tr> <tr> <td data-bbox="1267 1023 1446 1055">Nb</td><td data-bbox="1446 1023 1603 1055">1.4305</td><td data-bbox="1603 1023 1783 1055">Nb_2O_5</td></tr> <tr> <td data-bbox="1267 1055 1446 1087">Nd</td><td data-bbox="1446 1055 1603 1087">1.1664</td><td data-bbox="1603 1055 1783 1087">Nd_2O_3</td></tr> <tr> <td data-bbox="1267 1087 1446 1118">Pr</td><td data-bbox="1446 1087 1603 1118">1.2082</td><td data-bbox="1603 1087 1783 1118">Pr_6O_{11}</td></tr> <tr> <td data-bbox="1267 1118 1446 1150">Sc</td><td data-bbox="1446 1118 1603 1150">1.5338</td><td data-bbox="1603 1118 1783 1150">Sc_2O_3</td></tr> <tr> <td data-bbox="1267 1150 1446 1182">Sm</td><td data-bbox="1446 1150 1603 1182">1.1596</td><td data-bbox="1603 1150 1783 1182">Sm_2O_3</td></tr> <tr> <td data-bbox="1267 1182 1446 1214">Tb</td><td data-bbox="1446 1182 1603 1214">1.1762</td><td data-bbox="1603 1182 1783 1214">Tb_4O_7</td></tr> <tr> <td data-bbox="1267 1214 1446 1245">Tm</td><td data-bbox="1446 1214 1603 1245">1.1421</td><td data-bbox="1603 1214 1783 1245">Tm_2O_3</td></tr> <tr> <td data-bbox="1267 1245 1446 1277">Y</td><td data-bbox="1446 1245 1603 1277">1.2699</td><td data-bbox="1603 1245 1783 1277">Y_2O_3</td></tr> <tr> <td data-bbox="1267 1277 1446 1309">Yb</td><td data-bbox="1446 1277 1603 1309">1.1387</td><td data-bbox="1603 1277 1783 1309">Yb_2O_3</td></tr> </tbody> </table>	Element	Conversion Factor	Oxide Form	Ce	1.2284	CeO_2	Dy	1.1477	Dy_2O_3	Er	1.1435	Er_2O_3	Eu	1.1579	Eu_2O_3	Gd	1.1526	Gd_2O_3	Ho	1.1455	Ho_2O_3	La	1.1728	La_2O_3	Lu	1.1372	Lu_2O_3	Nb	1.4305	Nb_2O_5	Nd	1.1664	Nd_2O_3	Pr	1.2082	Pr_6O_{11}	Sc	1.5338	Sc_2O_3	Sm	1.1596	Sm_2O_3	Tb	1.1762	Tb_4O_7	Tm	1.1421	Tm_2O_3	Y	1.2699	Y_2O_3	Yb	1.1387	Yb_2O_3
Element	Conversion Factor	Oxide Form																																																						
Ce	1.2284	CeO_2																																																						
Dy	1.1477	Dy_2O_3																																																						
Er	1.1435	Er_2O_3																																																						
Eu	1.1579	Eu_2O_3																																																						
Gd	1.1526	Gd_2O_3																																																						
Ho	1.1455	Ho_2O_3																																																						
La	1.1728	La_2O_3																																																						
Lu	1.1372	Lu_2O_3																																																						
Nb	1.4305	Nb_2O_5																																																						
Nd	1.1664	Nd_2O_3																																																						
Pr	1.2082	Pr_6O_{11}																																																						
Sc	1.5338	Sc_2O_3																																																						
Sm	1.1596	Sm_2O_3																																																						
Tb	1.1762	Tb_4O_7																																																						
Tm	1.1421	Tm_2O_3																																																						
Y	1.2699	Y_2O_3																																																						
Yb	1.1387	Yb_2O_3																																																						

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> Intervals are shown as downhole lengths only, the true width is not yet known. The geometry and orientation of the REE mineralised structures has not been determined and its relationship to the angle of the drill hole is unknown. Further drilling is required to determine the geometry of the mineralisation with respect to the drill hole angle.
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Refer to Figures included in the body of the announcement.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> Comprehensive reporting of assay results is not practicable due to the number of elements assayed and length of the drill hole intervals. Reporting of significant TREO intersections at cut-off grades of 1,000ppm, 2,000ppm, 5,000ppm and 10,000ppm and other related elements is provided in Appendix II.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> None.
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> Preliminary metallurgical test work is planned along with modeling of existing drilling and geological interpretation to identify extensions of the known carbonatite REE mineralisation.